98
Views
76
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Role of Histone N-Terminal Tails and Their Acetylation in Nucleosome Dynamics

&
Pages 7230-7237 | Received 02 Mar 2000, Accepted 05 Jul 2000, Published online: 28 Mar 2023

REFERENCES

  • Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E., and Moudrianakis, E. N.. 1991. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88:10148–10152
  • Ausio, J., Dong, F., and van Holde, K. E.. 1989. Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J. Mol. Biol. 206:451–463
  • Baer, B. W., and Rhodes, D.. 1983. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature 301:482–488
  • Baneres, J. L., Martin, A., and Parello, J.. 1997. The N tails of histones H3 and H4 adopt a highly structured conformation in the nucleosome. J. Mol. Biol. 273:503–508
  • Bates, D. L., Butler, P. J., Pearson, E. C., and Thomas, J. O.. 1981. Stability of the higher-order structure of chicken-erythrocyte chromatin in solution. Eur. J. Biochem. 119:469–476
  • Burch, J. B., and Martinson, H. G.. 1980. The roles of H1, the histone core and DNA length in the unfolding of nucleosomes at low ionic strength. Nucleic Acids Res. 8:4969–4987
  • Chen, H., Li, B., and Workman, J. L.. 1994. A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J. 13:380–390
  • Chirinos, M., Hernandez, F., and Palacian, E.. 1998. Repressive effect on oligonucleosome transcription of the core histone tail domains. Biochemistry 37:7251–7259
  • Clark, D. J., and Felsenfeld, G.. 1992. A nucleosome core is transferred out of the path of a transcribing polymerase. Cell 71:11–22
  • Davie, J. R.. 1998. Covalent modifications of histones: expression from chromatin templates. Curr. Opin. Genet. Dev. 8:173–178
  • Duband-Goulet, I., Carot, V., Ulyanov, A. V., Douc-Rasy, S., and Prunell, A.. 1992. Chromatin reconstitution on small DNA rings. IV. DNA supercoiling and nucleosome sequence preference. J. Mol. Biol. 224:981–1001
  • Dumuis-Kervabon, A., Encontre, I., Etienne, G., Jauregui-Adell, J., Mery, J., Mesnier, D., and Parello, J.. 1986. A chromatin core particle obtained by selective cleavage of histones by clostripain. EMBO J. 5:1735–1742
  • Encontre, I., and Parello, J.. 1988. Chromatin core particle obtained by selective cleavage of histones H3 and H4 by clostripain. J. Mol. Biol. 202:673–676
  • Fletcher, T. M., and Hansen, J. C.. 1995. Core histone tail domains mediate oligonucleosome folding and nucleosomal DNA organization through distinct molecular mechanisms. J. Biol. Chem. 270:25359–25362
  • Garcia-Ramirez, M., Rocchini, C., and Ausio, J.. 1995. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270:17923–17928
  • Hamiche, A., Carot, V., Alilat, M., De Lucia, F., O'Donohue, M. F., Revet, B., and Prunell, A.. 1996. Interaction of the histone (H3-H4)2 tetramer of the nucleosome with positively supercoiled DNA minicircles: potential flipping of the protein from a left- to a right-handed superhelical form. Proc. Natl. Acad. Sci. USA 93:7588–7593
  • Hamiche, A., and Richard-Foy, H.. 1998. The switch in the helical handedness of the histone (H3-H4)2 tetramer within a nucleoprotein particle requires a reorientation of the H3-H3 interface. J. Biol. Chem. 273:9261–9269
  • Hamiche, A., Schultz, P., Ramakrishnan, V., Oudet, P., and Prunell, A.. 1996. Linker histone-dependent DNA structure in linear mononucleosomes. J. Mol. Biol. 257:30–42
  • Hartzog, G. A., and Winston, F.. 1997. Nucleosomes and transcription: recent lessons from genetics. Curr. Opin. Genet. Dev. 7:192–198
  • Hirschhorn, J. N., Brown, S. A., Clark, C. D., and Winston, F.. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6:2288–2298
  • Jackson, V.. 1990. In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29:719–731
  • Krajewski, W. A., and Becker, P. B.. 1998. Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc. Natl. Acad. Sci. USA 95:1540–1545
  • Lee, M. S., and Garrard, W. T.. 1991. Transcription-induced nucleosome ‘splitting’: an underlying structure for DNase I sensitive chromatin. EMBO J. 10:607–615
  • Lenfant, F., Mann, R. K., Thomsen, B., Ling, X., and Grunstein, M.. 1996. All four core histone N-termini contain sequences required for the repression of basal transcription in yeast. EMBO J. 15:3974–3985
  • Ling, X., Harkness, T. A., Schultz, M. C., Fisher-Adams, G., and Grunstein, M.. 1996. Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation. Genes Dev. 10:686–699
  • Louters, L., and Chalkley, R.. 1985. Exchange of histones H1, H2A, and H2B in vivo. Biochemistry 24:3080–3085
  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J.. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260
  • Lutter, L. C., Halvorson, H. R., and Calladine, C. R.. 1996. Topological measurement of protein-induced DNA bend angles. J. Mol. Biol. 261:620–633
  • Lutter, L. C., Judis, L., and Paretti, R. F.. 1992. Effects of histone acetylation on chromatin topology in vivo. Mol. Cell. Biol. 12:5004–5014
  • Nightingale, K. P., Wellinger, R. E., Sogo, J. M., and Becker, P. B.. 1998. Histone acetylation facilitates RNA polymerase II transcription of the Drosophila hsp26 gene in chromatin. EMBO J. 17:2865–2876
  • Norton, V. G., Imai, B. S., Yau, P., and Bradbury, E. M.. 1989. Histone acetylation reduces nucleosome core particle linking number change. Cell 57:449–457
  • Norton, V. G., Marvin, K. W., Yau, P., and Bradbury, E. M.. 1990. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J. Biol. Chem. 265:19848–19852
  • O'Neill, T. E., Roberge, M., and Bradbury, E. M.. 1992. Nucleosome arrays inhibit both initiation and elongation of transcripts by bacteriophage T7 RNA polymerase. J. Mol. Biol. 223:67–78
  • O'Neill, T. E., Smith, J. G., and Bradbury, E. M.. 1993. Histone octamer dissociation is not required for transcript elongation through arrays of nucleosome cores by phage T7 RNA polymerase in vitro. Proc. Natl. Acad. Sci. USA 90:6203–6207
  • Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M., and Reinberg, D.. 1999. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400:284–288
  • Panyim, S., and Chalkley, R.. 1969. A new histone found only in mammalian tissues with little cell division. Biochem. Biophys. Res. Commun. 37:1042–1049
  • Prunell, A.. 1998. A topological approach to nucleosome structure and dynamics: the linking number paradox and other issues. Biophys. J. 74:2531–2544
  • Reeve, J. N., Sandman, K., and Daniels, C. J.. 1997. Archaeal histones, nucleosomes, and transcription initiation. Cell 89:999–1002
  • Ruiz-Carrillo, A., and Jorcano, J. L.. 1979. An octamer of core histones in solution: central role of the H3-H4 tetramer in the self-assembly. Biochemistry 18:760–768
  • Sathyanarayana, U. G., Freeman, L. A., Lee, M. S., and Garrard, W. T.. 1999. RNA polymerase-specific nucleosome disruption by transcription in vivo. J. Biol. Chem. 274:16431–16436
  • Schuster, T., Han, M., and Grunstein, M.. 1986. Yeast histone H2A and H2B amino termini have interchangeable functions. Cell 45:445–451
  • Sivolob, A., De Lucia, F., Alilat, M., and Prunell, A.. 2000. Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles. J. Mol. Biol. 295:55–69
  • Stein, A., Whitlock, J. P.Jr., and Bina, M.. 1979. Acidic polypeptides can assemble both histones and chromatin in vitro at physiological ionic strength. Proc. Natl. Acad. Sci. USA 76:5000–5004
  • Studitsky, V. M., Clark, D. J., and Felsenfeld, G.. 1994. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76:371–382
  • Tse, C., Sera, T., Wolffe, A. P., and Hansen, J. C.. 1998. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18:4629–4638
  • Uberbacher, E. C., Ramakrishnan, V., Olins, D. E., and Bunick, G. J.. 1983. Neutron scattering studies of nucleosome structure at low ionic strength. Biochemistry 22:4916–4923
  • Van Holde, K. E.. 1989. Chromatin. Springer-Verlag, New York, N.Y
  • Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane-Robinson, C., Allis, C. D., and Workman, J. L.. 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15:2508–2518
  • Walker, J., Chen, T. A., Sterner, R., Berger, M., Winston, F., and Allfrey, V. G.. 1990. Affinity chromatography of mammalian and yeast nucleosomes. Two modes of binding of transcriptionally active mammalian nucleosomes to organomercurial-agarose columns, and contrasting behavior of the active nucleosomes of yeast. J. Biol. Chem. 265:5736–5746
  • Walter, P. P., Owen-Hughes, T. A., Cote, J., and Workman, J. L.. 1995. Stimulation of transcription factor binding and histone displacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer. Mol. Cell. Biol. 15:6178–6187
  • White, J. H., Gallo, R. M., and Bauer, W. R.. 1992. Closed circular DNA as a probe for protein-induced structural changes. Trends Biochem. Sci. 17:7–12
  • Wolffe, A. P., and Kurumizaka, H.. 1998. The nucleosome: a powerful regulator of transcription. Prog. Nucleic Acid Res. Mol. Biol. 61:379–422
  • Zivanovic, Y., Duband-Goulet, I., Schultz, P., Stofer, E., Oudet, P., and Prunell, A.. 1990. Chromatin reconstitution on small DNA rings. III. Histone H5 dependence of DNA supercoiling in the nucleosome. J. Mol. Biol. 214:479–495
  • Zivanovic, Y., Goulet, I., and Prunell, A.. 1986. Properties of supercoiled DNA in gel electrophoresis. The V-like dependence of mobility on topological constraint. DNA-matrix interactions. J. Mol. Biol. 192:645–660

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.