24
Views
59
CrossRef citations to date
0
Altmetric
Gene Expression

Dhr1p, a Putative DEAH-Box RNA Helicase, Is Associated with the Box C+D snoRNP U3

, , &
Pages 7238-7246 | Received 20 Apr 2000, Accepted 18 Jul 2000, Published online: 28 Mar 2023

REFERENCES

  • Allmang, C., Mitchell, P., Petfalski, E., and Tollervey, D.. 2000. Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res. 28:1684–1691
  • Arenas, J. E., and Abelson, J. N.. 1997. Prp43: an RNA helicase-like factor involved in spliceosome disassembly. Proc. Natl. Acad. Sci. USA 94:11798–11802
  • Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C.. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21:3329–3330
  • Beltrame, M., Henry, Y., and Tollervey, D.. 1994. Mutational analysis of an essential binding site for the U3 snoRNA in the 5′ external transcribed spacer of yeast pre-rRNA. Nucleic Acids Res. 22:5139–5147
  • Beltrame, M., and Tollervey, D.. 1995. Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis. EMBO J. 14:4350–4356
  • Beltrame, M., and Tollervey, D.. 1992. Identification and functional analysis of two U3 binding sites on yeast pre-ribosomal RNA. EMBO J. 11:1531–1542
  • Billy, E., Wegierski, T., Nasr, F., and Filipowicz, W.. 2000. Rcl1p, the yeast protein similar to the RNA 3′-phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis. EMBO J. 19:2115–2126
  • Calvet, J. P., and Pederson, T.. 1981. Base-pairing interactions between small nuclear RNAs and nuclear RNA precursors as revealed by psoralen cross-linking in vivo. Cell 26:363–370
  • Cherest, H., Kerjan, P., and Surdin-Kerjan, Y.. 1987. The Saccharomyces cerevisiae MET3 gene: nucleotide sequence and relationship of the 5′ non-coding region to that of MET25. Mol. Gen. Genet. 210:307–313
  • Company, M., Arenas, J., and Abelson, J.. 1991. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 349:487–493
  • Czaplinski, K., Weng, Y., Hagan, K. W., and Peltz, S. W.. 1995. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA 1:610–623
  • Dammel, C. S., and Noller, H. F.. 1993. A cold-sensitive mutation in 16S rRNA provides evidence for helical switching in ribosome assembly. Genes Dev. 7:660–670
  • de la Cruz, J., Kressler, D., and Linder, P.. 1999. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24:192–198
  • de la Cruz, J., Kressler, D., Tollervey, D., and Linder, P.. 1998. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J. 17:1128–1140
  • Dunbar, D. A., Wormsley, S., Agentis, T. M., and Baserga, S. J.. 1997. Mpp10p, a U3 small nucleolar ribonucleoprotein component required for pre-18S rRNA processing in yeast. Mol. Cell. Biol. 17:5803–5812
  • Fuller-Pace, F. V.. 1994. RNA helicases: modulators of RNA structure. Trends Cell Biol. 4:271–274
  • Hartshorne, T.. 1998. Distinct regions of U3 snoRNA interact at two sites within the 5′ external transcribed spacer of pre-rRNAs in Trypanosoma brucei cells. Nucleic Acids Res. 26:2541–2553
  • Hughes, J. M.. 1996. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J. Mol. Biol. 259:645–654
  • Hughes, J. M., Ares, M.Jr.. 1991. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J. 10:4231–4239
  • Jacobs, J. S., Anderson, A. R., and Parker, R. P.. 1998. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17:1497–1506
  • Jacquier, A., Rodriguez, J. R., and Rosbash, M.. 1985. A quantitative analysis of the effects of 5′ junction and TACTAAC box mutants and mutant combinations on yeast mRNA splicing. Cell 43:423–430
  • Jansen, R., Tollervey, D., and Hurt, E. C.. 1993. A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing. EMBO J. 12:2549–2558
  • Kass, S., Tyc, K., Steitz, J. A., and Sollner-Webb, B.. 1990. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60:897–908
  • Kressler, D., Linder, P., and de la Cruz, J.. 1999. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:7897–7912
  • Lafontaine, D., and Tollervey, D.. 1996. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res. 24:3469–3471
  • Lafontaine, D. L., and Tollervey, D.. 1998. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23:383–388
  • Lafontaine, D. L. J., Bousquet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M., and Tollervey, D.. 1998. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12:527–537
  • Lafontaine, D. L. J., Preiss, T., and Tollervey, D.. 1998. Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol. Cell. Biol. 18:2360–2370
  • Lafontaine, D. L. J., and Tollervey, D.. 1999. Nop58p is a common component of the box C+D snoRNPs that is required for snoRNA stability. RNA 5:455–467
  • Lafontaine, D. L. J., and Tollervey, D.. 2000. Synthesis and assembly of the box C+D small nucleolar RNPs. Mol. Cell. Biol. 20:2650–2659
  • Lee, S. J., and Baserga, S. J.. 1997. Functional separation of pre-rRNA processing steps revealed by truncation of the U3 small nucleolar ribonucleoprotein component, Mpp10. Proc. Natl. Acad. Sci. USA 94:13536–13541
  • Lee, S. J., and Baserga, S. J.. 1999. Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for pre-18S rRNA processing. Mol. Cell. Biol. 19:5441–5452
  • Leeds, P., Wood, J. M., Lee, B.-S., and Culbertson, M. R.. 1992. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2165–2177
  • Li, H. V., Zagorski, J., and Fournier, M. J.. 1990. Depletion of U14 small nuclear RNA (snR128) disrupts production of 18S rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1145–1152
  • Liang, W.-Q., Clark, J. A., and Fournier, M. J.. 1997. The rRNA-processing function of the yeast U14 small nucleolar RNA can be rescued by a conserved RNA helicase-like protein. Mol. Cell. Biol. 17:4124–4132
  • Lin, R. J., Lustig, A. J., and Abelson, J.. 1987. Splicing of yeast nuclear pre-mRNA in vitro requires a functional 40S spliceosome and several extrinsic factors. Genes Dev. 1:7–18
  • Luking, A., Stahl, U., and Schmidt, U.. 1998. The protein family of RNA helicases. Crit. Rev. Biochem. Mol. Biol. 33:259–296
  • Maser, R. L., and Calvet, J. P.. 1989. U3 small nuclear RNA can be psoralen-cross-linked in vivo to the 5′ external transcribed spacer of pre-ribosomal-RNA. Proc. Natl. Acad. Sci. USA 86:6523–6527
  • Mereau, A., Fournier, R., Gregoire, A., Mougin, A., Fabrizio, P., Luhrmann, R., and Branlant, C.. 1997. An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA. J. Mol. Biol. 273:552–571
  • Morrissey, J. P., and Tollervey, D.. 1993. Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol. Cell. Biol. 13:2469–2477
  • Mougey, E. B., Pape, L. K., and Sollner-Webb, B.. 1993. A U3 small nuclear ribonucleoprotein-requiring processing event in the 5′ external transcribed spacer of Xenopus precursor rRNA. Mol. Cell. Biol. 13:5990–5998
  • Newman, D. R., Kuhn, J. F., Shanab, G. M., and Maxwell, E. S.. 2000. Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription. RNA 6:861–879
  • Niewmierzycka, A., and Clarke, S.. 1999. S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae: identification of a novel protein arginine methyltransferase. J. Biol. Chem. 274:814–824
  • Peltz, S. W., Brown, A. H., and Jacobson, A.. 1993. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev. 7:1737–1754
  • Plumpton, M., McGarvey, M., and Beggs, J. D.. 1994. A dominant negative mutation in the conserved RNA helicase motif ‘SAT’ causes splicing factor PRP2 to stall in spliceosomes. EMBO J. 13:879–887
  • Pringle, J. R., Adams, A. E., Drubin, D. G., and Haarer, B. K.. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194:565–602
  • Rasmussen, T. P., and Culbertson, M. R.. 1998. The putative nucleic acid helicase Sen1p is required for formation and stability of termini and for maximal rates of synthesis and levels of accumulation of small nucleolar RNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6885–6896
  • Schimmang, T., Tollervey, D., Kern, H., Frank, R., and Hurt, E. C.. 1989. A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J. 8:4015–4024
  • Schmid, S. R., and Linder, P.. 1992. D-E-A-D protein family of putative RNA helicases. Mol. Microbiol. 6:283–291
  • Schwer, B., and Gross, C. H.. 1998. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J. 17:2086–2094
  • Schwer, B., and Guthrie, C.. 1991. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349:494–499
  • Seraphin, B., Kretzner, L., and Rosbash, M.. 1988. A U1 snRNA:pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO J. 7:2533–2538
  • Séraphin, B., and Rosbash, M.. 1989. Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 59:349–358
  • Sharma, K., and Tollervey, D.. 1999. Base pairing between U3 small nucleolar RNA and the 5′ end of 18S rRNA is required for pre-rRNA processing. Mol. Cell. Biol. 19:6012–6019
  • Shiratori, A., Shibata, T., Arisawa, M., Hanaoka, F., Murakami, Y., and Eki, T.. 1999. Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis. Yeast 15:219–253
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Smith, C. M., and Steitz, J. A.. 1997. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89:669–672
  • Staley, J. P., and Guthrie, C.. 1998. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326
  • Teigelkamp, S., McGarvey, M., Plumpton, M., and Beggs, J. D.. 1994. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA. EMBO J. 13:888–897
  • Tollervey, D.. 1987. A yeast small nuclear RNA is required for normal processing of pre-ribosomal RNA. EMBO J. 6:4169–4175
  • Tollervey, D., and Guthrie, C.. 1985. Deletion of a yeast small nuclear RNA gene impairs growth. EMBO J. 4:3873–3878
  • Tollervey, D., Lehtonen, H., Jansen, R., Kern, H., and Hurt, E. C.. 1993. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–457
  • Tollervey, D., and Mattaj, I. W.. 1987. Fungal small nuclear ribonucleoproteins share properties with plant and vertebrate U-snRNPs. EMBO J. 6:469–476
  • Ursic, D., DeMarini, D. J., and Culbertson, M. R.. 1995. Inactivation of the yeast Sen1 protein affects the localization of nucleolar proteins. Mol. Gen. Genet. 249:571–584
  • Ursic, D., Himmel, K. L., Gurley, K. A., Webb, F., and Culbertson, M. R.. 1997. The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res. 25:4778–4785
  • Venema, J., Bousquet-Antonelli, C., Gelugne, J. P., Caizergues-Ferrer, M., and Tollervey, D.. 1997. Rok1p is a putative RNA helicase required for rRNA processing. Mol. Cell. Biol. 17:3398–3407
  • Venema, J., and Tollervey, D.. 1999. Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33:261–311
  • Wagner, J. D., Jankowsky, E., Company, M., Pyle, A. M., and Abelson, J. N.. 1998. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes. EMBO J. 17:2926–2937
  • Wang, H., Boisvert, D., Kim, K. K., Kim, R., and Kim, S. H.. 2000. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Å resolution. EMBO J. 19:317–323
  • Wang, Y., and Guthrie, C.. 1998. PRP16, a DEAH-box RNA helicase, is recruited to the spliceosome primarily via its nonconserved N-terminal domain. RNA 4:1216–1229
  • Wang, Y., Wagner, J., and Guthrie, C.. 1998. The DEAH-box splicing factor Prp16 unwinds RNA duplexes. Curr. Biol. 8:441–451
  • Watkins, N. J., Gottschalk, A., Neubauer, G., Kastner, B., Fabrizio, P., Mann, M., and Luhrmann, R.. 1998. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549–1568
  • Wiederkehr, T., Pretot, R. F., and Minvielle-Sebastia, L.. 1998. Synthetic lethal interactions with conditional poly(A) polymerase alleles identify LCP5, a gene involved in 18S rRNA maturation. RNA 4:1357–1372
  • Wu, P., Brockenbrough, J. S., Metcalfe, A. C., Chen, S., and Aris, J. P.. 1998. Nop5p is a small nucleolar ribonucleoprotein component required for pre-18S rRNA processing in yeast. J. Biol. Chem. 273:16453–16463
  • Zebarjadian, Y., King, T., Fournier, M. J., Clarke, L., and Carbon, J.. 1999. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell. Biol. 19:7461–7472

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.