270
Views
1,294
CrossRef citations to date
0
Altmetric
Minireview

Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms

&
Pages 429-440 | Published online: 28 Mar 2023

REFERENCES

  • Ahmad, I.. 1995. Mash-1 is expressed during ROD photoreceptor differentiation and binds an E-box, E opsin-1 in the rat opsin gene. Brain Res. Dev. Brain Res. 90:184–189
  • Alani, R., Hasskarl, J., Grace, M., Hernandez, M.-C., Israel, M., and Munger, K.. 1999. Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc. Natl. Acad. Sci. USA 96:9637–9641
  • Alland, L., Muhle, R., Hou, H.Jr., Potes, J., Chin, L., Schreiber-Agus, N., and DePinho, R. A.. 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55
  • Alonso, M., and Cabrera, C.. 1988. The Achaete-Scute gene complex of Drosophila melanogaster comprises four homologous genes. EMBO 7:2585–2591
  • Aronheim, A., Shiran, R., Rosen, A., and Walker, M. D.. 1993. The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc. Natl. Acad. Sci. USA 90:8063–8067
  • Atchley, W., and Fitch, W.. 1997. A natural classification of the basic helix-loop-helix class of transcription factors. Proc. Natl. Acad. Sci. USA 94:5172–5176
  • Ayer, D., Kretzner, L., and Eisenman, R.. 1993. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72:211–222
  • Ayer, D., Lawrence, Q., and Eisenman, R.. 1995. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776
  • Baer, R.. 1993. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Semin. Cancer Biol. 4:341–347
  • Bain, G., Engel, I., Maandag, E. R., te Riele, H., Voland, J., Sharp, L., Chun, J., Huey, B., Pinkel, D., and Murre, C.. 1997. E2A deficiency leads to abnormalities in αβ T-cell development and to the rapid development of T-cell lymphomas. Mol. Cell. Biol. 17:4782–4791
  • Bain, G., Gruenwald, S., and Murre, C.. 1993. E2A and E2-2 are subunits of B-cell-specific E2-box DNA-binding proteins. Mol. Cell. Biol. 13:3522–3529
  • Bain, G., Maandag, E., Izon, D., Amsen, D., Kruisbeek, A., Weintraub, B., Krop, I., Schlissel, M., Feeney, A., van Roon, M., van der Valk, M., te Riele, H., Berns, A., and Murre, C.. 1994. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892
  • Bain, G., Romanow, W., Albers, K., Havran, W., and Murre, C.. 1999. Positive and negative regulation of V(D)J recombination by the E2A proteins. J. Exp. Med. 189:289–300
  • Bannister, A., and Kouzarides, T.. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643
  • Barbaric, S., Munsterkotter, M., Goding, C., and Horz, W.. 1998. Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol. Cell. Biol. 18:2629–2639
  • Barek, C.. 1992. The development of B cells and the B cell repertoire in the microenvironment of the germinal center. Immunol. Rev. 126:7–18
  • Ben-Arie, N., Bellen, H. J., Armstrong, D. L., McCall, A. E., Gordadze, P. R., Guo, Q., Matzuk, M. M., and Zoghbi, H. Y.. 1997. Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172
  • Benezra, R., Davis, R., Lockshon, D., Turner, D., and Weintraub, H.. 1990. The protein Id—a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59
  • Berben, G., Legrain, M., Gilliquet, V., and Hilger, F.. 1990. The yeast regulatory gene PHO4 encodes a helix-loop-helix motif. Yeast 6:451–454
  • Bermingham, N., Hassan, B., Price, S., Vollrath, M., Ben-Arie, N., Eatock, R., Bellen, H., Lysakowski, A., and Zoghbi, H.. 1999. Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1842
  • Bessis, A., Salmon, A., Zoli, M., Le Novere, N., Picciotto, M., and Changeux, J.. 1995. Promoter elements conferring neuron-specific expression of the beta 2-subunit of the neuronal nicotinic acetylcholine receptor studied in vitro and in transgenic mice. Neuroscience 69:807–819
  • Blackwood, E. M., and Eisenman, R. N.. 1991. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217
  • Bopp, D., Bell, L., Cline, T., and Schedl, P.. 1991. Developmental distribution of female-specific Sex-lethal proteins in Drosophila melanogaster. Genes Dev. 5:403–415
  • Braun, T., and Arnold, H. H.. 1995. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J. 14:1176–1186
  • Braun, T., Rudnicki, M. A., Arnold, H. H., and Jaenisch, R.. 1992. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382
  • Brown, M. S., and Goldstein, J. L.. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340
  • Buskin, J. N., and Hauschka, S. D.. 1989. Identification of a myocyte nuclear factor which binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640
  • Cai, M., and Davis, R.. 1990. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437–446
  • Chen, G., Fernandez, J., Mische, S., and Courey, A.. 1999. A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development. Genes Dev. 13:2218–2230
  • Cheng, S. W., Davies, K. P., Yung, E., Beltran, R. J., Yu, J., and Kalpana, G. V.. 1999. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat. Genet. 22:102–105
  • Choi, J., Shen, C.-P., Radomska, H., Eckhardt, L., and Kadesch, T.. 1996. E47 activates the Ig-heavy chain and TdT loci in non-B cells. EMBO J. 15:5014–5021
  • Cline, T. W.. 1989. The affairs of daughterless and the promiscuity of developmental regulators. Cell 59:231–234
  • Cole, M.. 1986. The myc oncogene: its role in transformation and differentiation. Annu. Rev. Gen. 20:361–385
  • Crews, S.. 1998. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 12:607–620
  • Cronmiller, C., and Cline, T. W.. 1987. The sex determination gene daughterless has different functions in the germ line versus the soma. Cell 48:479–487
  • Deed, R., Hara, E., Atherton, G., Peters, G., and Norton, J.. 1997. Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation. Mol. Cell. Biol. 17:6815–6821
  • Eckner, R., Yao, T.-P., Oldread, E., and Livingston, D.. 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10:2478–2490
  • Ellenberger, T., Fass, D., Arnaud, M., and Harrison, S.. 1994. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev. 8:970–980
  • Ellis, H. M., Spann, D. R., and Posakony, J. W.. 1990. extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. Cell 61:27–38
  • Engel, I., and Murre, C.. 1999. Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc. Natl. Acad. Sci. USA 96:996–1001
  • Ephrussi, A., Church, G. M., Tonegawa, S., and Gilbert, W.. 1985. B-lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140
  • Facchini, L., and Penn, L.. 1998. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J. 12:633–651
  • Fascher, K.-D., Schmitz, J., and Horz, W.. 1993. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation. J. Mol. Biol. 231:658–667
  • Ferre-D'Amare, A., Prendergast, G., Ziff, E., and Burley, S.. 1993. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45
  • Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D., and Olson, E. N.. 1998. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat. Genet. 18:266–270
  • Fisher, A. L., and Caudy, M.. 1998. Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev. 12:1931–1940
  • Garrell, J., and Modolel, J.. 1990. The Drosophila extramacrochaetae locus, an antagonist of proneural genes that like these genes, encodes a helix-loop-helix protein. Cell 61:39–48
  • Gerber, A., Klesert, T., Bergstrom, D., and Tapscott, S.. 1997. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev. 11:436–450
  • German, M., Blanar, M., Nelson, C., Moss, L., and Rutter, W.. 1991. Two related helix-loop-helix proteins participate in separate cell-specific complexes that bind the insulin enhancer. Mol. Endocrinol. 5:292–299
  • Goldfarb, A., Flores, J., and Lewandowska, K.. 1996. Involvement of the E2A basic helix-loop-helix protein in immunoglobulin heavy chain class switching. Mol. Immunol. 33:947–956
  • Gossett, L., Kelvin, D., Sternberg, E., and Olsen, E.. 1989. A new myocyte-specific enhancer binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033
  • Grant, A., Jones, A., Thomas, K., and Wisden, W.. 1996. Characterization of the rat hippocalcin gene: the 5′ flanking region directs expression to the hippocampus. Neuroscience 75:1099–1115
  • Grant, P., Schieltz, D., Pray-Grant, M., Steger, D., Reese, J., Yates, J.III, and Workman, J.. 1998. A subset of TAFIIs are integral components of the SAGA complex required for nucleosomal acetylation and transcription stimulation. Cell 94:45–53
  • Grant, P., Schieltz, D., Pray-Grant, M., Yates, J.III, and Workman, J.. 1998. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2:863–867
  • Guillemot, F., Lo, L.-C., Johnson, J., Auerbach, A., Anderson, D., and Joyner, A.. 1993. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476
  • Halevy, O., Novitch, B., Spicer, D., Skapek, S., Rhee, J., Hannon, G., Beach, D., and Lassar, A.. 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018–1021
  • Hamamori, Y., Sartorelli, V., Ogryzko, V., Puri, P., Wu, H.-Y., Wang, J., Nakatani, Y., and Kedes, L.. 1999. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96:405–413
  • Hamamori, Y., Wu, H.-Y., Sartorelli, V., and Kedes, L.. 1997. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol. Cell. Biol. 17:6563–6573
  • Hankinson, O.. 1995. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35:307–340
  • Hara, E., Hall, M., and Peters, G.. 1997. Cdk2-dependent phosphorylation of Id2 modulates activity of E2A-related transcription factors. EMBO J. 16:101–110
  • Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N., and Klein, W. H.. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364:501–506
  • Heemskerk, M. H., Blom, B., Nolan, G., Stegmann, A. P., Bakker, A. Q., Weijer, K., Res, P. C., and Spits, H.. 1997. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186:1597–1602
  • Heinzel, T., Lavinsky, R. M., Mullen, T. M., Söderstrom, M., Laherty, C. D., Torchia, J., Yang, W. M., Brard, G., Ngo, S. D., Davie, J. R., Seto, E., Eisenman, R. N., Rose, D. W., Glass, C. K., and Rosenfeld, M. G.. 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48
  • Henriksson, M., and Luscher, B.. 1996. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68:109–182
  • Henthorn, P., Kiledjian, M., and Kadesch, T.. 1990. Two distinct transcription factors that bind the immunoglobulin enhancer μE5/ κE2 motif. Science 247:467–470
  • Henthorn, P., Stewart, C., Kadesch, T., and Puck, J.. 1991. The gene encoding human TFE3, a transcription factor that binds the immunoglobulin heavy-chain enhancer, maps to xp11;22. Genomics 11:374–378
  • Hoshizaki, D., Hill, J., and Henry, S.. 1990. The Saccharomyces cerevisiae INO4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes. J. Biol. Chem. 265:3320–3328
  • Hua, X., Liu, X., Ansari, D., and Lodish, H.. 1998. Synergistic cooperation of TFE3 and Smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev. 12:3084–3095
  • Iavarone, A., Garg, P., Lasorella, A., Hsu, J., and Israel, M.. 1994. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 8:1270–1284
  • Ishibashi, M., Ang, S. L., Shiota, K., Nakanishi, S., Kageyama, R., and Guillemot, F.. 1995. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9:3136–3148
  • Jain, S., Dolwick, K., Schmidt, J., and Bradfield, C.. 1994. Potent transactivation domains of the Ah receptor and the Ah receptor nuclear translocator map to their carboxy termini. J. Biol. Chem. 269:31518–31524
  • Jen, Y., Manova, K., and Benezra, R.. 1997. Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn. 208:92–106
  • Jia, Y., Rothermel, B., Thornton, J., and Butow, R.. 1997. A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol. Cell. Biol. 17:1110–1117
  • Kee, B., and Murre, C.. 1998. Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J. Exp. Med. 188:699–713
  • Keyes, L., Cline, T., and Schedl, P.. 1992. The primary sex determination signal of Drosophila acts at the level of transcription. Cell 68:933–943
  • Klambt, C., Knust, E., Tietze, K., and Campos-Ortega, J. A.. 1989. Closely related transcripts encoded by the neurogenic gene complex enhancer of split of Drosophila melanogaster. EMBO J. 8:203–210
  • Kleeff, J., Ishiwata, T., Friess, H., Buchler, M., Israel, M., and Korc, M.. 1998. The helix-loop-helix protein Id2 is overexpressed in human pancreatic cancer. Cancer Res. 58:3769–3772
  • Ko, H., Okino, S., Ma, Q., Whitlock, J.Jr.. 1996. Dioxin-induced CYP1A1 transcription in vivo: the aromatic hydrocarbon receptor mediates transactivation, enhancer-promoter communication, and changes in chromatin structure. Mol. Cell. Biol. 16:430–436
  • Ko, H., Okino, S., Ma, Q., Whitlock, J.Jr.. 1997. Transactivation domains facilitate promoter occupancy for the dioxin-inducible CYP1A1 gene in vivo. Mol. Cell. Biol. 17:3497–3507
  • Komeili, A., and O'Shea, E.. 1999. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977–980
  • Krause, M., Park, M., Zhang, J. M., Yuan, J., Harfe, B., Xu, S. Q., Greenwald, I., Cole, M., Paterson, B., and Fire, A.. 1997. A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 124:2179–89
  • Laherty, C. D., Yang, W. M., Sun, J. M., Davie, J. R., Seto, E., and Eisenman, R. N.. 1997. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356
  • Langlands, K., Yin, X., Anand, G., and Prochownik, E. V.. 1997. Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J. Biol. Chem. 272:19785–19793
  • Larson, R. C., Lavenir, I., Larson, T. A., Baer, R., Warren, A. J., Wadman, I., Nottage, K., and Rabbitts, T. H.. 1996. Protein dimerization between Lmo2(Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J. 15:1021–1027
  • Lassar, A. B., Buskin, J. N., Lockshon, D., Davis, R. L., Apone, S., Hauschka, S. D., and Weintraub, H.. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831
  • Lee, J. E., Hollenberg, S. M., Snider, L., Turner, D. L., Lipnick, N., and Weintraub, H.. 1995. Conversion of Xenopus ectoderm into neurons by neuroD, a basic helix-loop-helix protein. Science 268:836–844
  • Lemercier, C., To, R. Q., Carrasco, R. A., and Konieczny, S. F.. 1998. The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of MyoD. EMBO J. 17:1412–1422
  • Lenburg, M. E., and O'Shea, E. K.. 1996. Signaling phosphate starvation. Trends Biochem. Sci. 21:383–387
  • Liao, X., and Butow, R.. 1993. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72:61–71
  • Liao, X., Small, W., Srere, P., and Butow, R.. 1991. Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:38–46
  • Luger, K., Mader, A., Richmond, R., Sargent, D., and Richmond, T.. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260
  • Lyden, D., Young, A., Zagzag, D., Yan, W., Gerald, W., O'Reilly, R., Bader, B., Hynes, R., Zhuang, Y., Manova, K., and Benezra, R.. 1999. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumor xenografts. Nature 401:670–677
  • Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J. L., and Anderson, D. J.. 1998. Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482
  • Ma, Q., Kintner, C., and Anderson, D. J.. 1996. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52
  • Martinsen, B. J., and Bronner-Fraser, M.. 1998. Neural crest specification regulated by the helix-loop-helix repressor Id2. Science 281:988–991
  • Massari, M., Grant, P., Pray-Grant, M., Berger, S., Workman, J., and Murre, C.. 1999. A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol. Cell 4:63–73
  • Massari, M., Jennings, P., and Murre, C.. 1996. The AD1 transactivation domain of E2A contains a highly conserved helix which is required for its activity in both Saccharomyces cerevisiae and mammalian cells. Mol. Cell. Biol. 16:121–129
  • Massari, M., Rivera, R., Voland, J., Quong, M., Breit, T., van Dongen, J., de Smit, O., and Murre, C.. 1998. Characterization of ABF-1, a novel basic helix-loop-helix transcription factor expressed in activated B lymphocytes. Mol. Cell. Biol. 18:3130–3139
  • McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D., and Cole, M. D.. 1998. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94:363–374
  • Morrow, M., Mayer E., Perez C., Adlam M., and Siu G.. Overexpression of the helix-loop-helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol., in press.
  • Murre, C., Bain, G., Dijk, M. A. v., Engel, I., Furnari, B. A., Massari, M. E., Matthews, J. R., Quong, M. W., Rivera, R. R., and Stuiver, M. H.. 1994. Structure and function of helix-loop-helix proteins. Biochim. Biophys. Acta 1218:129–135
  • Murre, C., McCaw, P. S., and Baltimore, D.. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783
  • Murre, C., Mccaw, P. S., Vaessin, H., Caudy, M., Jan, L. Y., Jan, Y. N., Cabrera, C. V., Buskin, J. N., Hauschka, S. D., Lassar, A. B., Weintraub, H., and Baltimore, D.. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544
  • Murre, C., Voronova, A., and Baltimore, D.. 1991. B-cell- and myocyte-specific E2-box-binding factors contain E12/E47-like subunits. Mol. Cell. Biol. 11:1156–1160
  • Mutoh, H., Naya, F., Tsai, M.-J., and Leiter, A.. 1998. The basic helix-loop-helix protein BETA2 interacts with p300 to coordinate differentiation of secretin-expressing enteroendocrine cells. Genes Dev. 12:820–830
  • Naar, A., Beaurang, P., Robinson, K., Oliner, J., Avizonis, D., Scheek, S., Zwicker, J., Kadonaga, J., and Tjian, R.. 1998. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergic activation by Sp1 and SREBP-1a in vitro. Genes Dev. 12:3020–3031
  • Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I., and Nabeshima, Y.. 1993. Myogenin gene disruption results in perinatal lethality because of severe muscle defects. Nature 364:532–535
  • Naya, F., Huang, H.-P., Qiu, Y., Mutoh, H., DeMayo, F., Leiter, A., and Tsai, M.-J.. 1997. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev. 11:2323–2334
  • Nelsen, B., and Sen, R.. 1992. Regulation of immunoglobulin gene transcription. Int. Rev. Cytol. 133:121–149
  • Nelsen, B., Tian, G., Erman, B., Gregoire, J., Maki, R., Graves, B., and Sen, R.. 1993. Regulation of the lymphoid-specific immunoglobulin mu heavy chain gene enhancer by the ETS-domain proteins. Science 261:82–86
  • Nelson, C., Shen, L. P., Meister, A., Fodor, E., and Rutter, W. J.. 1990. Pan: a transcriptional regulator that binds chymotrypsin, insulin and AP-4 enhancer motifs. Genes Dev. 4:1035–1044
  • Nikoloff, D., McGraw, P., and Henry, S.. 1992. The INO2 gene of Saccharomyces cerevisiae encodes a helix-loop-helix protein that is required for activation of phospholipid synthesis. Nucleic Acids Res. 20: 3253
  • Ogryzko, V., Kotani, T., Zhang, X., Schlitz, R., Howard, T., Yang, X., Howard, B., Qin, J., and Nakatani, Y.. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44
  • Ogryzko, V., Schiltz, R., Russanova, V., Howard, B., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Olson, E.. 1990. MyoD family: a paradigm for development? Genes Dev. 4:1454–1461
  • Olson, E. N., Arnold, H. H., Rigby, P. W., and Wold, B. J.. 1996. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85:1–4
  • Ono, Y., Fukuhara, N., and Yoshie, O.. 1998. TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol. Cell. Biol. 18:6939–6950
  • O'Riordan, M., and Grosschedl, R.. 1997. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 7:25–36
  • Park, C., and Walker, M.. 1992. Subunit structure of cell-specific E-box binding proteins analyzed by quantitation of electrophoretic mobility shift. J. Biol. Chem. 267:15642–15649
  • Park, S. T., Nolan, G. P., and Sun, X. H.. 1999. Growth inhibition and apoptosis due to restoration of E2A activity in T cell acute lymphoblastic leukemia cells. J. Exp. Med. 189:501–508
  • Park, S. T., and Sun, X. H.. 1998. The Tal1 oncoprotein inhibits E47-mediated transcription. Mechanism of inhibition. J. Biol. Chem. 273:7030–7037
  • Parkhurst, S., and Meneely, P.. 1994. Sex determination and dosage compensation: lessons from flies and worms. Science 264:924–932
  • Parkhurst, S. M.. 1998. Groucho: making its Marx as a transcriptional co-repressor. Trends Genet. 14:130–132
  • Patapoutian, A., Yoon, J. K., Miner, J. H., Wang, S., Stark, K., and Wold, B.. 1995. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121:3347–3358
  • Pepitoni, S., Wood, I., and Buckley, N.. 1997. Structure of the m1 muscarinic acetylcholine receptor gene and its promoter. J. Biol. Chem. 272:17112–17117
  • Peverali, F., Ramqvist, T., Saffrich, R., Pepperkok, R., Barone, M., and Philipson, L.. 1994. Regulation of G1 progression by E2A and Id helix-loop-helix proteins. EMBO J. 13:4291–4301
  • Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, F., and Orkin, S.. 1996. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86:47–57
  • Prabhu, S., Ignatova, A., Park, S., and Sun, X.-H.. 1997. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol. Cell. Biol. 17:5888–5896
  • Puri, P., Sartorelli, V., Yang, X.-J., Hamamori, Y., Ogryzko, V., Howard, B., Kedes, L., Wang, J., Graessmann, A., Nakatani, Y., and Levrero, M.. 1997. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell. 1:35–45
  • Qiu, Y., Sharma, A., and Stein, R.. 1998. p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol. Cell. Biol. 18:2957–2964
  • Quong, M., Harris, D., Swain, S., and Murre, C.. 1999. E2A activity is induced during B-cell activation to promote immunoglobulin class switch recombination. EMBO J. 18:6307–6318
  • Quong, M. W., Massari, M. E., Zwart, R., and Murre, C.. 1993. A new transcriptional activation motif restricted to a class of helix-loop-helix proteins is functionally conserved in both yeast and mammalian cells. Mol. Cell. Biol. 13:792–800
  • Riechmann, V., Cruchten, I. v., and Sablitzky, F.. 1994. The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, Id2 and Id3. Nucl. Acids Res. 22:749–755
  • Riechmann, V., and Sablitzky, F.. 1995. Mutually exclusive expression of two dominant-negative helix-loop-helix (dnHLH) genes, Id4 and Id3, in the developing brain of the mouse suggests distinct regulatory roles of these dnHLH proteins during cellular proliferation and differentiation of the nervous system. Cell Growth and Differentiation 6:837–43
  • Riley, P., Anson-Cartwright, L., and Cross, J. C.. 1998. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nature Genetics 18:271–5
  • Roberts, V. J., Steenbergen, R., and Murre, C.. 1993. Localization of E2A mRNA expression in developing and adult rat tissues. Proc. Natl. Acad. Sci. USA 90:7583–7587
  • Rothermel, B., Thornton, J., and Butow, R.. 1997. Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J. Biol. Chem. 272:19801–19807
  • Rudnicki, M., Braun, T., Hinuma, S., and Jaenisch, R.. 1992. Inactivation of MyoD in mice leads to an up-regulation of the myogenic HLH gene Myf5 and results in apparently normal muscle development. Cell 71:383–390
  • Rudnicki, M., Schnegelsbery, P., Stead, R., Braun, T., Arnold, H., and Jaenisch, R.. 1993. MyoD or Myf5 is required for the formation of skeletal muscle. Cell 75:1351–1359
  • Rudolph, H., and Hinnen, A.. 1987. The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection. Proc. Natl. Acad. Sci. USA 84:1340–1344
  • Rushlow, C. A., Hogan, A., Pinchin, S. M., Howe, K. M., Lardelli, M., and Ish-Horowicz, D.. 1989. The Drosophila hairy protein acts in both segmentation and bristle patterning and shows homology to N-myc. EMBO J. 8:3095–3103
  • Ruvkun, G., and Hobert, O.. 1998. The taxonomy of developmental control in Caenorhabditis elegans. Science 282:2033–2041
  • Sanchez, H. B., Yieh, L., and Osborne, T. F.. 1995. Cooperation by sterol regulatory element-binding protein and Sp1 in sterol regulation of low density lipoprotein receptor gene. J. Biol. Chem. 270:1161–1169
  • Sánchez-García, I., and Rabbitts, T.. 1993. LIM domain proteins in leukaemia and development. Semin. Cancer Biol. 4:349–358
  • Sartorelli, V., Huang, J., Hamamori, Y., and Kedes, L.. 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17:1010–1026
  • Schlissel, M., Voronova, A., and Baltimore, D.. 1991. Helix loop helix transcription factor-E47 activates germ-line immunoglobulin heavy-chain gene transcription and rearrangement in a pre-T-cell line. Genes Dev. 5:1367–1376
  • Schreiber-Argus, N., Chin, L., Chen, K., Torres, R., Rao, G., Guida, P., Skoultchi, A., and DePinho, R.. 1995. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80:777–786
  • Schreiber-Argus, N., and DePinho, R.. 1998. Repression by the Mad(Mxi1)-Sin3 complex. Bioessays 20:808–818
  • Shen, C. P., and Kadesch, T.. 1995. B-cell-specific DNA binding by an E47 homodimer. Mol. Cell. Biol. 15:4518–4524
  • Shieh, S.-Y., and Tsai, M.-J.. 1991. Cell-specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene. J. Biol. Chem. 266:16707–16714
  • Shivdasani, R., Mayer, E., and Orkin, S.. 1995. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373:432–434
  • Sigvardsson, M., O'Riordan, M., and Grosschedl, R.. 1997. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 7:25–36
  • Spicer, D., Rhee, J., Cheung, W., and Lassar, A.. 1996. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein twist. Science 272:1476–1480
  • Srivastava, D., Cserjesi, P., and Olson, E. N.. 1995. A subclass of bHLH proteins required for cardiac morphogenesis. Science 270:1995–1999
  • Srivastava, D., Thomas, T., Lin, Q., Kirby, M. L., Brown, D., and Olson, E. N.. 1997. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat. Genet. 16:154–160
  • Staudt, L., and Lenardo, M.. 1991. Immunoglobulin gene transcription. Annu. Rev. Immunol. 9:373–398
  • Sun, X.-H., and Baltimore, D.. 1991. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64:459–470
  • Svaren, J., and Hörz, W.. 1997. Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci. 22:93–97
  • Svaren, J., Schmitz, J., and Horz, W.. 1994. The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter. EMBO J. 13:4856–4862
  • Thompson, J., Higgins, D., and Gibson, T.. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680
  • Van Doren, M., Ellis, H., and Posakony, J.. 1991. The Drosophila extramacrochaete protein antogonizes sequence-specific DNA binding by daughterless/achaete-scute protein complexes. Development 113:245–255
  • Vassilev, A., Yamauchi, J., Kotani, T., Prives, C., Avantaggiati, M. L., Qin, J., and Nakatani, Y.. 1998. The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol. Cell 2:869–875
  • Venter, U., Svaren, J., Schmitz, J., Schmid, A., and Horz, W.. 1994. A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J. 13:4848–4855
  • Venuti, J., and Cserjesi, P.. 1996. Molecular embryology of skeletal myogenesis. Curr. Topics Dev. Biol. 34:169–206
  • Wadman, I. A., Osada, H., Grütz, G. G., Agulnick, A. D., Westphal, H., Forster, A., and Rabbitts, T. H.. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16:3145–3157
  • Warren, A., Colledge, W., Carlton, M., Evans, M., Smith, A., and Rabbitts, T.. 1994. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78:45–57
  • Weintraub, H., Dwarki, V., Verma, I., Davis, R., Hollenberg, S., Snider, L., Lassar, A., and Tapscott, S.. 1991. Muscle-specific transcriptional activation by MyoD. Genes Dev. 5:1377–1386
  • Whelan, J., Cordle, S. R., Henderson, E., Weil, P. A., and Stein, R.. 1990. Identification of a pancreatic β-cell insulin gene transcription factor that binds to and appears to activate cell-type-specific gene expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Mol. Cell. Biol. 10:1564–1572
  • Wrischnik, L. A., and Kenyon, C. J.. 1997. The role of lin-22, a hairy/enhancer of split homolog, in patterning the peripheral nervous system of C. elegans. Development 124:2875–2888
  • Yamada, Y., Warren, A. J., Dobson, C., Forster, A., Pannell, R., and Rabbitts, T. H.. 1998. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc. Natl. Acad. Sci. USA 95:3890–3895
  • Yan, W., Young, A. Z., Soares, V. C., Kelley, R., Benezra, R., and Zhuang, Y.. 1997. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol. Cell. Biol. 17:7317–7327
  • Yang, X.-J., Ogryzko, V., Nishikawa, J., Howard, B., and Nakatani, Y.. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324
  • Yokota, Y., Mansouri, A., Mori, S., Sugawara, S., Adachi, S., Nishikawa, S., and Gruss, P.. 1999. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706
  • Zervos, A., Gyuris, J., and Brent, R.. 1994. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 79:388–398
  • Zhang, W., Behringer, R. R., and Olson, E. N.. 1995. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev. 9:1388–1399
  • Zhao, C., and Emmons, S. W.. 1995. A transcription factor controlling development of peripheral sense organs in C. elegans. Nature 373:74–78
  • Zhao, Q., Zhou, X., and Mattei, M.. 1993. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol. Cell. Biol. 13:4505–4512
  • Zhuang, Y., Cheng, P., and Weintraub, H.. 1996. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol. Cell. Biol. 16:2898–2905
  • Zhuang, Y., Soriano, P., and Weintraub, H.. 1994. The helix-loop-helix gene E2A is required for B cell formation. Cell 79:875–884

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.