56
Views
267
CrossRef citations to date
0
Altmetric
Gene Expression

Yeast Exosome Mutants Accumulate 3′-Extended Polyadenylated Forms of U4 Small Nuclear RNA and Small Nucleolar RNAs

, &
Pages 441-452 | Received 16 Aug 1999, Accepted 08 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Allmang, C., Petfalski, E., Podtelejnikov, A., Mann, M., Tollervey, D., and Mitchell, P.. 1999. The yeast exosome and human PM-Scl are related complexes of 3′ to 5′ exonucleases. Genes Dev. 13:2148–2158
  • Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E., and Tollervey, D.. 1999. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18:5399–5410
  • Briggs, M. W., Burkard, K. T., and Butler, J. S.. 1998. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J. Biol. Chem. 273:13255–13263
  • Brown, C. E., and Sachs, A. B.. 1998. Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol. Cell. Biol. 18:6548–6559
  • Chanfreau, G., Elela, S. A., Ares, M.Jr., and Guthrie, C.. 1997. Alternative 3′-end processing of U5 snRNA by RNase III. Genes Dev. 11:2741–2751
  • Chanfreau, G., Legrain, P., and Jacquier, A.. 1998. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J. Mol. Biol. 284:975–988
  • Chanfreau, G., Rotondo, G., Legrain, P., and Jacquier, A.. 1998. Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J. 17:3726–3737
  • Chapon, C., Cech, T. R., and Zaug, A. J.. 1997. Polyadenylation of telomerase RNA in budding yeast. RNA 3:1337–1351
  • Decker, C. J., and Parker, R.. 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7:1632–1643
  • de la Cruz, J., Kressler, D., Tollervey, D., and Linder, P.. 1998. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae EMBO J. 17:1128–1140
  • Deutscher, M. P.. 1990. Ribonucleases, tRNA nucleotidyltransferase and the 3′ processing of tRNA. Prog. Nucleic Acids Res. Mol. Biol. 39:209–240
  • Graber, J. H., Cantor, C. R., Mohr, S. C., and Smith, T. F.. 1999. Genomic detection of new yeast pre-mRNA 3′-end-processing signals. Nucleic Acids Res. 27:888–894
  • Hatfield, L., Beelman, C. A., Stevens, A., and Parker, R.. 1996. Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:5830–5838
  • Hereford, L. M., and Rosbash, M.. 1977. Number and distribution of polyadenylated RNA sequences in yeast. Cell 10:453–462
  • Jacobs Anderson, J. S., and Parker, R.. 1998. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17:1497–1506
  • Jacobson, A.. 1996. Poly(A) metabolism and translation: the closed loop model Translational control. Hershey, J. W. B., Mathews, M. B., and Sonenberg, N. 451–480 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Johnson, A. W., and Kolodner, R. D.. 1995. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell. Biol. 15:2719–2727
  • Kadowaki, T., Chen, S., Hitomi, M., Jacobs, E., Kumagai, C., Liang, S., Schneiter, R., Singleton, D., Wisniewska, J., and Tartakoff, A. M.. 1994. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol. 126:649–659
  • Kadowaki, T., Schneiter, R., Hitomi, M., and Tartakoff, A. M.. 1995. Mutations in nucleolar proteins lead to nucleolar accumulation of polyA+ RNA in Saccharomyces cerevisiae. Mol. Biol. Cell 6:1103–1110
  • Li, Z., Pandit, S., and Deutscher, M. P.. 1998. Polyadenylation of stable RNA precursors in vivo. Proc. Natl. Acad. Sci. USA 95:12158–12162
  • Liang, S., Hitomi, M., Hu, Y. H., Liu, Y., and Tartakoff, A. M.. 1996. A DEAD-box-family protein is required for nucleocytoplasmic transport of yeast mRNA. Mol. Cell. Biol. 16:5139–5146
  • Maxwell, E. S., and Fournier, M. J.. 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 64:897–934
  • Mitchell, P., Petfalski, E., and Tollervey, D.. 1996. The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 10:502–513
  • Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D.. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91:457–466
  • Muhlrad, D., and Parker, R.. 1994. Premature translational termination triggers mRNA decapping. Nature 370:578–581
  • Muhlrad, D., Decker, C. J., and Parker, R.. 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15:2145–2156
  • Patel, D., and Butler, J. S.. 1992. Conditional defect in mRNA 3′ end processing caused by a mutation in the gene for poly(A) polymerase. Mol. Cell. Biol. 12:3297–3304
  • Pederson, T.. 1998. The pluripotent nucleolus. Nucleic Acids Res. 26:3871–3876
  • Petfalski, E., Dandekar, T., Henry, Y., and Tollervey, D.. 1998. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol. Cell. Biol. 18:1181–1189
  • Qu, L. H., Henras, A., Lu, Y. J., Zhou, H., Zhou, W. X., Zhu, Y. Q., Zhao, J., Henry, Y., Caizergues-Ferrer, M., and Bachellerie, J. P.. 1999. Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol. Cell. Biol. 19:1144–1158
  • Rasmussen, T. P., and Culbertson, M. R.. 1996. Analysis of yeast trimethylguanosine-capped RNAs by midwestern blotting. Gene 182:89–96
  • Riedel, N., Wise, J. A., Swerdlow, H., Mak, A., and Guthrie, C.. 1986. Small nuclear RNAs from Saccharomyces cerevisiae: unexpected diversity in abundance, size, and molecular complexity. Proc. Natl. Acad. Sci. USA 83:8097–8101
  • Schneiter, R., Kadowaki, T., and Tartakoff, A. M.. 1995. mRNA transport in yeast: time to reinvestigate the functions of the nucleus. Mol. Biol. Cell 6:357–370
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Tekamp, P. A., Garcea, R. L., and Rutter, W. J.. 1980. Transcription and in vitro processing of yeast 5 S rRNA. J. Biol. Chem. 255:9501–9506
  • Tollervey, D., and Kiss, T.. 1997. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9:337–342
  • Venema, J., and Tollervey, D.. 1995. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11:1629–1650
  • Villa, T., Ceradini, F., Presutti, C., and Bozzoni, I.. 1998. Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities. Mol. Cell. Biol. 18:3376–3383
  • Zanchin, N. I., and Goldfarb, D. S.. 1999. Nip7p interacts with Nop8p, an essential nucleolar protein required for 60S ribosome biogenesis, and the exosome subunit Rrp43p. Mol. Cell. Biol. 19:1518–1525

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.