34
Views
279
CrossRef citations to date
0
Altmetric
Cell Growth and Development

p21-Activated Kinase 1 Phosphorylates the Death Agonist Bad and Protects Cells from Apoptosis

, , , , , & show all
Pages 453-461 | Received 19 Mar 1999, Accepted 17 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Aktories, K., and Just, I.. 1995. Monoglucosylation of low-molecular-mass GTP-binding Rho proteins by clostridial cytotoxins. Trends Cell Biol. 5:441–443
  • Basu, S., Bayoumy, S., Zhang, Y., Lozano, J., and Kolesnick, R.. 1998. BAD enables ceramide to signal apoptosis via Ras and Raf-1. J. Biol. Chem. 273:30419–30426
  • Benard, V., Bohl, B., and Bokoch, G.. 1999. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274:13198–13204
  • Blume-Jensen, P., Janknecht, R., and Hunter, T.. 1998. The Kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr. Biol. 8:779–782
  • Bokoch, G. M., Reilly, A. M., Daniels, R. H., King, C. C., Olivera, A., Spiegel, S., and Knaus, U. G.. 1998. A GTPase-independent mechanisms of p21-activated kinase activation. J. Biol. Chem. 723:8137–8144
  • Daniels, R. H., Hall, P. S., and Bokoch, G. M.. 1998. Membrane targeting of p21-activated kinase (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17:754–764
  • Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M. E.. 1997. Akt phosphorylation of Bad couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241
  • del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., and Nunez, G.. 1997. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689
  • Dharmawardhane, S., Sanders, L. C., Martin, S., Daniels, R. H., and Bokoch, G. M.. 1997. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J. Cell Biol. 138:1265–1278
  • Ding, J., Knaus, U. G., Lian, J. P., Bokoch, G. M., and Badwey, J. A.. 1996. The renaturable 69- and 63-kDa protein kinases that undergo rapid activation in chemoattractant-stimulated guinea pig neutrophils are p21-activated kinases. J. Biol. Chem. 271:24869–24873
  • Dudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D. R., and Greenberg, M. E.. 1997. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665
  • Ernst, J. D., Yang, L., Rosales, J. L., and Broaddus, V. C.. 1998. Preparation and characterization of an endogenously fluorescent annexin for detection of apoptotic cells. Anal. Biochem. 260:18–23
  • Farschon, D. M., Couture, C., Mustelin, T., and Newmeyer, D. D.. 1997. Temporal phases in apoptosis defined by the actions of Src homology 2 domains, ceramide, Bcl-2, interleukin-1 beta converting enzyme family proteases, and a dense membrane fraction. J. Cell Biol. 137:1117–1125
  • Faure, S., Vigneron, S., Dorree, M., and Morin, N.. 1997. A member of the Ste20/PAK family of protein kinases is involved in both arrest in Xenopus oocytes and G2/prophase of the first meiotic cell cycle and prevention of apoptosis. EMBO J. 16:5550–5561
  • Franke, T. F., Kaplan, D. R., and Cantley, L. C.. 1997. PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437
  • Franke, T. F., Kaplan, D. R., Cantley, L. C., and Toker, A.. 1997. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668
  • Gajewski, T. F., and Thompson, C. B.. 1996. Apoptosis meets signal transduction: elimination of BAD influence. Cell 87:589–592
  • Galisteo, M., Chernoff, J., Su, Y.-C., Skolnik, E. Y., and Schlessinger, J.. 1996. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J. Biol. Chem. 271:20997–21000
  • Golstein, P.. 1997. Controlling cell death. Science 275:1081–1082
  • Green, D., and Reed, J. C.. 1998. Mitochondria and apoptosis. Science 281:1309–1312
  • Han, J., Luby-Phelps, K., Das, B., Shu, X., Xia, Y., Mosteller, R. D., Krishna, U. M., Falk, J. R., White, M. A., and Broek, D.. 1998. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphates by Vav. Science 279:558–560
  • Harada, H., Becknell, B., Wilm, M., Mann, M., Huang, L., Taylor, S., Scott, J., and Korsmeyer, S.. 1999. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3:413–422
  • Hawkins, P. T., Eguinoa, A., Qiu, R. G., Stokoe, D., Cooke, F. T., Walters, R., Wennstrom, S., Claesson-Welsh, L., Evans, T., Symons, M. et al. 1995. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol. 5:393–403
  • Hengartner, M. O.. 1997. Apoptosis. CED-4 is a stranger no more. Nature 397:714–715
  • Hinton, H., and Welham, M.. 1999. Cytokine-induced protein kinase B activation and Bad phosphorylation do not correlate with cell survival of hemopoietic cells. J. Immunol. 162:7002–7009
  • Jacobsen, M. D., Weil, M., and Raff, M. C.. 1997. Programmed cell death in animal development. Cell 88:347–354
  • Joneson, T., and Bar-Sagi, D.. 1999. Suppression of Rad-induced apoptosis by the Rac GTPase. Mol. Cell. Biol. 19:5892–5901
  • Knaus, U. G., Morris, S., Dong, H., Chernoff, J., and Bokoch, G. M.. 1995. Regulation of human leukocyte p21-activated kinases through G protein-coupled receptors. Science 269:221–223
  • Koopman, G., Reutelingsperger, C., Kuijten, G., Keehen, R., Pals, S., and van Oers, M.. 1994. Annexin V for flow cytometric detection of phosphatidylserine expression of B cells undergoing apoptosis. Blood 84:1415–1420
  • Kulik, G., Klippel, A., and Weber, M. J.. 1997. Antiapoptotic signaling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol. Cell. Biol. 17:1595–1606
  • Lee, N., MacDonald, H., Reinhard, C., Halenbeck, R., Roulston, A., Shi, T., and Williams, L. T.. 1997. Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc. Natl. Acad. Sci. USA 94:13642–13647
  • Lim, L., Manser, E., Leung, T., and Hall, C.. 1996. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signaling pathways. Eur. J. Biochem. 242:171–185
  • Lundstrom, K., Mills, A., Buell, G., Allet, E., Adamis, N., and Liljestrom, P.. 1994. High-level expression of the human neurokinin-1 receptor in mammalian cell lines using the Semliki Forest virus expression system. Eur. J. Biochem. 224:917–921
  • McKearn, J. P., McCurbey, J., and Fagg, B.. 1995. Enrichment of hematopoetic precursor cells and cloning of multipotential B-lymphocyte precursors. Proc. Natl. Acad. Sci. USA 82:7414–7418
  • Neshat, M. S., Raitano A. B., Wang H. G., Reed J. C., and Sawyers C. L.. Phosphorylation of the proapoptotic protein Bad in cells expressing the Bcr-Abl oncogene through phosphatidylinositol 3-kinase and Raf-dependent signaling pathways. Submitted for publication.
  • Nishida, K., Kaziro, Y., and Satoh, T.. 1999. Anti-apoptotic function of Rac in hematopoietic cells. Oncogene 18:407–415
  • Numnual, A. S., Yatsula, B. A., and Bar-Sagi, D.. 1998. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279:560–563
  • Oltvai, Z. N., and Korsmeyer, S. J.. 1994. Checkpoints of dueling dimers foil death wishes. Cell 79:189–192
  • Philpott, K. L., McCarthy, M. J., Klippel, A., and Rubin, L. L.. 1997. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J. Cell Biol. 139:809–815
  • Price, L. S., Leng, J., Schwartz, M. A., and Bokoch, G. M.. 1998. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9:1863–1871
  • Reed, J. C.. 1998. Bcl-2 family proteins. Oncogene 17:3225–3236
  • Rudel, T., and Bokoch, G. M.. 1997. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571–1574
  • Rudel, T., Zenke, F. T., Chuang, T.-H., and Bokoch, G. M.. 1998. p21-activated kinase (PAK) is required for Fas-induced JNK activation in Jurkat cells. J. Immunol. 160:7–11
  • Rukenstein, A., Rydel, R. E., and Greene, L. A.. 1991. Multiple agents rescue PC12 cells from serum-free cell death by translation and transcription-independent mechanisms. J. Neurosci. 11:2552–2563
  • Salomoni, P., Wasik, M. A., Riedel, R. F., Reiss, K., Choi, J. K., Skorski, T., and Calabretta, B.. 1998. Expression of constitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant. J. Exp. Med. 187:1995–2007
  • Segal, R. A., and Greenberg, M. E.. 1996. Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19:463–489
  • Sells, M. A., and Chernoff, J.. 1997. Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol. 7:162–167
  • Sells, M. A., Boyd, J. T., and Chernoff, J.. 1999. p21-activated kinase 1 (PAK1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145:837–849
  • Sells, M. A., Knaus, U. G., Bagrodia, S., Ambrose, D. M., Bokoch, G. M., and Chernoff, J.. 1997. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7:202–210
  • Smyth, M. J., Perry, D. K., Zhang, J., Poirier, G. G., Hannun, Y. A., and Obeid, L. M.. 1996. prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem. J. 316:25–28
  • Stewart, C. E., and Rotwein, P.. 1996. Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol. Rev. 76:1005–1026
  • Vlahos, C. J., Matter, W. F., Hui, K. Y., and Brown, R. F.. 1994. A specific inhibitor of phosphatidylinositol 3-kinase 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269:5241–5248
  • Wang, H.-G., Rapp, U. R., and Reed, J. C.. 1996. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87:629–638
  • Wang, H.-G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T. F., and Reed, J. C.. 1999. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343
  • Wyllie, H. A.. 1997. Apoptosis. British Medical Bulletin 53. The Dorset Press, Dorchester, England
  • Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E.. 1995. Opposing effects of ERK and JNK-p38-MAP kinases on apoptosis. Science 270:1326–1331
  • Yang, E., Zha, J., Jockel, J., Boise, L. H., Thompson, C. B., and Korsmeyer, S. J.. 1995. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291
  • Yano, S., Tokumitsu, H., and Soderling, T. R.. 1998. Calcium promotes cell survival through CaM-K kinase activation of protein-kinase-B-pathway. Nature 396:584–587
  • Zenke, F., King, C., Bohl, B., and Bokoch, G.. 1999. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 274:32565–32573
  • Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J.. 1996. Serine phosphorylation of death agonist Bad in response to survival factor results in binding to 14-3-3 not Bcl-xL. Cell 87:619–628
  • Zhang, S., Han, J., Sells, M. A., Chernoff, J., Knaus, U. G., Ulevitch, R. J., and Bokoch, G. M.. 1995. Rho family GTPases regulated p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem. 270:23934–23936
  • Zhao, Z. S., Chen, X. Q., Chong, C., Leung, T., and Lim, L.. 1998. A conserved negative regulatory region in αPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol. 18:2153–2163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.