23
Views
34
CrossRef citations to date
0
Altmetric
Cell Growth and Development

CLN1 and Its Repression by Xbp1 Are Important for Efficient Sporulation in Budding Yeast

&
Pages 478-487 | Received 09 Jul 1999, Accepted 13 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Alani, E., Padmore, R., and Kleckner, N.. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436
  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. 1987. Current protocols in molecular biology. John Wiley & Sons, New York, N.Y
  • Bauer, D., Muller, H., Reich, J., Riedel, H., Ahrenkiel, V., Warthoe, P., and Strauss, M.. 1993. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res. 21:4272–4280
  • Bishop, D. K., Park, D., Xu, L., and Kleckner, N.. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456
  • Bowdish, K. S., and Mitchell, A. P.. 1993. Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol. Cell. Biol. 13:2172–2181
  • Bowdish, K. S., Yuan, H. E., and Mitchell, A. P.. 1995. Positive control of yeast meiotic genes by the negative regulator UME6. Mol. Cell. Biol. 15:2955–2961
  • Briza, P., Breitenbach, M., Ellinger, A., and Segall, J.. 1990. Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Genes Dev. 4:1775–1789
  • Buess, M., Moroni, C., and Hirsch, H. H.. 1997. Direct identification of differentially expressed genes by cycle sequencing and cycle labeling using the differential display PCR primers. Nucleic Acids Res. 25:2233–2235
  • Cherest, H., and Surdin-Kerjan, Y.. 1992. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130:51–58
  • Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O., and Herskowitz, I.. 1998. The transcriptional program of sporulation in budding yeast. Science 282:699–705
  • Chu, S., and Herskowitz, I.. 1998. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1:685–696
  • Colomina, N., Gari, E., Gallego, C., Herrero, E., and Aldea, M.. 1999. G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. EMBO J. 18:320–329
  • Dahmann, C., and Futcher, B.. 1995. Specialization of B-type cyclins for mitosis or meiosis in S. cerevisiae. Genetics 140:957–963
  • De Massy, B., Baudat, F., and Nicolas, A.. 1994. Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc. Natl. Acad. Sci. USA 91:11929–11933
  • Dirick, L., Goetsch, L., Ammerer, G., and Byers, B.. 1998. Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae. Science 281:1854–1857
  • Ferea, T. L., Botstein, D., Brown, P. O., and Rosenzweig, R. F.. 1999. Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc. Natl. Acad. Sci. USA 96:9721–9726
  • Friesen, H., Lunz, R., Doyle, S., and Segall, J.. 1994. Mutation of the SPS1-encoded protein kinase of Saccharomyces cerevisiae leads to defects in transcription and morphology during spore formation. Genes Dev. 8:2162–2175
  • Grandin, N., and Reed, S. I.. 1993. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol. Cell. Biol. 13:2113–2125
  • Hepworth, S. R., Ebisuzaki, L. K., and Segall, J.. 1995. A 15-base-pair element activates the SPS4 gene midway through sporulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:3934–3944
  • Kane, S., and Roth, R.. 1974. Carbohydrate metabolism during ascospore development in yeast. J. Bacteriol. 118:8–14
  • Kassir, Y., Granot, D., and Simchen, G.. 1988. IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell 52:853–862
  • Kihara, K., Nakamura, M., Akada, R., and Yamashita, I.. 1991. Positive and negative elements upstream of the meiosis-specific glucoamylase gene in Saccharomyces cerevisiae. Mol. Gen. Genet. 226:383–392
  • Krisak, L., Strich, R., Winters, R. S., Hall, J. P., Mallory, M. J., Kreitzer, D., Tuan, R. S., and Winter, E.. 1994. SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev. 8:2151–2161
  • Kupiec, M., Byers, B., Esposito, R. E., and Mitchell, A. P.. Meiosis and sporulation in Saccharomyces cerevisiae p. 889–1036. In Pringle, J. R., Broach, J. R., and Jones, E. W. The molecular and cellular biology of the yeast Saccharomyces cerevisiae, vol. 3. Cell cycle and cell biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Law, D. T., and Segall, J.. 1988. 1997. The SPS100 gene of Saccharomyces cerevisiae is activated late in the sporulation process and contributes to spore wall maturation. Mol. Cell. Biol. 8:912–922
  • Leem, S. H., Chung, C. N., Sunwoo, Y., and Araki, H.. 1998. Meiotic role of SWI6 in Saccharomyces cerevisiae. Nucleic Acids Res. 26:3154–3158
  • Lew, D. J., Weinert, T., and Pringle, J. R.. Cell cycle control in Saccharomyces cerevisiae p. 607–695. In Pringle, J. R., Broach, J. R., and Jones, E. W. The molecular and cellular biology of the yeast Saccharomyces cerevisiae, vol. 3. Cell cycle and cell biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Liang, P., and Pardee, A. B.. 1992. 1997. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971
  • Mai, B., and Breeden, L.. 1997. Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol. Cell. Biol. 17:6491–6501
  • Mitchell, A. P.. 1994. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58:56–70
  • Mitchell, A. P., Driscoll, S. E., and Smith, H. E.. 1990. Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2104–2110
  • Nicolas, A.. 1998. Relationship between transcription and initiation of meiotic recombination: toward chromatin accessibility. Proc. Natl. Acad. Sci. USA 95:87–89
  • Nurse, P.. 1990. Universal control mechanism regulating onset of M-phase. Nature 344: 430
  • Ohta, K., Shibata, T., and Nicolas, A.. 1994. Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J. 13:5754–5763
  • Ono, B., Tanaka, K., Naito, K., Heike, C., Shinoda, S., Yamamoto, S., Ohmori, S., Oshima, T., and Toh-e, A.. 1992. Cloning and characterization of the CYS3 (CYI1) gene of Saccharomyces cerevisiae. J. Bacteriol. 174:3339–3347
  • Ozsarac, N., Straffon, M. J., Dalton, H. E., and Dawes, I. W.. 1997. Regulation of gene expression during meiosis in Saccharomyces cerevisiae: SPR3 is controlled by both ABF1 and a new sporulation control element. Mol. Cell. Biol. 17:1152–1159
  • Padmore, R., Cao, L., and Kleckner, N.. 1991. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66:1239–1256
  • Richardson, H. E., Wittenberg, C., Cross, F., and Reed, S. I.. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133
  • Rocco, V., de Massy, B., and Nicolas, A.. 1992. The Saccharomyces cerevisiae ARG4 initiator of meiotic gene conversion and its associated double-strand DNA breaks can be inhibited by transcriptional interference. Proc. Natl. Acad. Sci. USA 89:12068–12072
  • Rubin-Bejerano, I., Mandel, S., Robzyk, K., and Kassir, Y.. 1996. Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional repressor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol. Cell. Biol. 16:2518–2526
  • Schultes, N. P., and Szostak, J. W.. 1991. A poly(dA · dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:322–328
  • Shuster, E. O., and Byers, B.. 1989. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Genetics 123:29–43
  • Smith, H. E., and Mitchell, A. P.. 1989. A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:2142–2152
  • Smith, H. E., Su, S. S., Neigeborn, L., Driscoll, S. E., and Mitchell, A. P.. 1990. Role of IME1 expression in regulation of meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:6103–6113
  • Stuart, D., and Wittenberg, C.. 1998. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the S/M checkpoint. Genes Dev. 12:2698–2710
  • Surana, U., Robitsch, H., Price, C., Schuster, T., Fitch, I., Futcher, A. B., and Nasmyth, K.. 1991. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145–161
  • Wach, A.. 1996. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259–265
  • West, A. H., Clark, D. J., Martin, J., Neupert, W., Hartl, F. U., and Horwich, A. L.. 1992. Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. J. Biol. Chem. 267:24625–24633
  • White, M. A., Dominska, M., and Petes, T. D.. 1993. Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:6621–6625

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.