24
Views
59
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Histone H1 Is a Specific Repressor of Core Histone Acetylation in Chromatin

, , , &
Pages 523-529 | Received 26 Aug 1999, Accepted 22 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Allan, J., Hartman, P. G., Crane-Robinson, C., and Aviles, F. X.. 1980. The structure of histone H1 and its location in chromatin. Nature 288:675–679
  • Allan, J., Mitchel, T., Harborne, N., Bohm, L., and Crane-Robinson, C.. 1986. Roles of H1 domains in determining higher order chromatin structure and H1 location. J. Mol. Biol. 187:591–601
  • Ausio, J., Dong, F., and van Holde, K. E.. 1989. Use of selectively trypsinized nucleosome core particles to analyze the role of histone “tails” in the stabilization of nucleosomes. J. Mol. Biol. 206:451–463
  • Bresnick, E. H., Bustin, M., Marsaud, V., Richard-Foy, H., and Hager, G. L.. 1992. The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 20:273–278
  • Brownell, J. E., and Allis, C. D.. 1995. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA 92:6364–6368
  • Bustin, M.. 1973. Arrangement of histones in chromatin. Nat. New Biol. 245:207–209
  • Bustin, M., and Cole, R. D.. 1969. Bisection of a lysine-rich histone by N-bromosuccinimide. J. Biol. Chem. 244:5291–5294
  • Carruthers, L. M., Bednar, J., Woodcock, C. L., and Hansen, J. C.. 1998. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry 37:14776–14787
  • Cary, P. D., Hines, M. L., Bradbury, E. M., Smith, B. J., and Johns, E. W.. 1981. Conformational studies of histone H1° in comparison with histones H1 and H5. Eur. J. Biochem. 120:371–377
  • Delcuve, G. P., and Davie, J. R.. 1989. Chromatin structure of erythroid-specific genes of immature and mature chicken erythrocytes. Biochem. J. 263:179–186
  • Ericsson, C., Grossbach, U., Bjorkroth, B., and Daneholt, B.. 1990. Presence of histone H1 on an active Balbiani ring gene. Cell 60:73–83
  • Fletcher, T. M., and Hansen, J. C.. 1995. Core histone tail domains mediate oligonucleosome folding and nucleosomal DNA organization through distinct molecular mechanisms. J. Biol. Chem. 270:25359–25362
  • Fletcher, T. M., and Hansen, J. C.. 1996. The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryotic Gene Expr. 6:149–188
  • Fryer, C. J., and Archer, T. K.. 1998. Chromatin remodelling by the glucocorticoid receptor require the BRG1 complex. Nature 393:88–91
  • Grant, P. A., Duggan, L., Cote, J., Roberts, S. M., Brownell, J., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C. D., Winston, F., Berger, S. L., and Workman, J. L.. 1997. yGCN5 function within multisubunit ADA and SPT/ADA adapter complexes to acetylate nucleosomal histones. Genes Dev. 11:1640–1650
  • Graziano, V., Gerchman, S. E., and Ramakeichnan, V.. 1988. Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin. J. Mol. Biol. 203:997–1007
  • Hansen, J., Tse, C., and Wolffe, A. P.. 1998. Structure and function of core histone N-termini: more than meets the eye. Biochemistry 37:17637–17641
  • Herrera, J. E., Bergel, M., Yang, X. J., Nakatani, Y., and Bustin, M.. 1997. The histone acetyltransferase activity of human GCN5 and PCAF is stabilized by coenzymes. J. Biol. Chem. 272:27253–27258
  • Juan, L. J., Utley, R. T., Adams, C. C., Vetesse-Dadey, M., and Workman, J. L.. 1994. Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini. EMBO J. 13:6031–6040
  • Kornberg, R. D., LaPointe, J. W., and Lorch, Y.. 1989. Preparation of nucleosomes and chromatin. Methods Enzymol. 170:3–14
  • Kuo, M. H., and Allis, C. D.. 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626
  • Kuo, M. H., Brownell, J. E., Sobel, R. E., Ranalli, T. A., Cook, R. G., Edmondson, D. G., Roth, S. Y., and Allis, C. D.. 1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383:269–272
  • Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E., and Allis, C. D.. 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12:627–639
  • Laybourn, P. J., and Kadonaga, J. T.. 1991. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254:238–245
  • Lee, H. L., and Archer, T. K.. 1998. Prolonged glutocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO J. 17:1454–1466
  • Maman, J. D., Yager, T. D., and Allan, J.. 1994. Self-association of the globular domain of histone H5. Biochemistry 33:1300–1310
  • Mizzen, C. A., Brownell, J. E., Cook, R. G., and Allis, C. D.. 1999. Histone acetyltransferase: preparation of substrates and assay procedures. Methods Enzymol. 304:675–696
  • Mizzen, C. A., and Allis, C. D.. 1998. Linking histone acetylation to transcriptional regulation. Cell. Mol. Life Sci. 54:6–20
  • Nagpal, S., Ghosn, C., Disepio, D., Molina, Y., Sutter, M., Klein, E. S., and Chandraratna, R. A.. 1999. Retinoid-dependent recruitment of a histone H1 displacement activity by retinoic acid receptor. J. Biol. Chem. 274:22563–22568
  • Nelson, P. P., Albright, S. C., Wiseman, J. M., and Garrard, W. T.. 1979. Reassociation of histone H1 with nucleosomes. J. Biol. Chem. 254:11751–11760
  • Nickel, B. E., Allis, C. D., and Davie, J. R.. 1989. Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28:958–963
  • Ogryzko, V. V., Kotani, T., Zhang, X., Schlitz, R. L., Howard, T., Yang, X. J., Howard, B. H., Qin, J., and Nakatani, Y.. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44
  • Paranjape, S. M., Kamakaka, R. T., and Kadonaga, J. T.. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297
  • Perry, C. A., and Annunziato, A. T.. 1991. Histone acetylation reduces H1-mediated nucleosome interactions during chromatin assembly. Exp. Cell Res. 196:337–345
  • Perry, C. A., and Annunziato, A. T.. 1989. Influence of histone acetylation on the solubility, H1 content and DNase I sensitivity of newly assembled chromatin. Nucleic Acids Res. 17:4275–4291
  • Ridsdale, J. A., Hendzel, M. J., Delcuve, G. P., and Davie, J. R.. 1990. Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin. J. Biol. Chem. 265:5150–5156
  • Ridsdale, J. A., and Davie, J. R.. 1987. Chicken erythrocyte polynucleosomes which are soluble at physiological ionic strength and contain linker histones are highly enriched in beta-globin gene sequences. Nucleic Acids Res. 15:1081–1096
  • Schiltz, R. L., Mizzen, C. A., Vassilev, A., Cook, R. G., Allis, C. D., and Nakatani, Y.. 1999. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J. Biol. Chem. 274:1189–1192
  • Schultz, T. F., Spiker, S., and Quatrano, R. S.. 1996. Histone H1 enhances the DNA binding activity of the transcription factor EmBP-1. J. Biol. Chem. 271:25742–25745
  • Schwarz, P. M., and Hansen, J. C.. 1994. Formation and stability of higher order chromatin structures. Contributions of the histone octamer. J. Biol. Chem. 269:16284–16289
  • Shaw, B. R., Herman, T. M., Kovacic, R. T., Beaudreau, G. S., and Van Holde, K. E.. 1976. Analysis of subunit organization in chicken erythrocyte chromatin. Proc. Natl. Acad. Sci. USA 73:505–509
  • Shick, V. V., Belyavsky, A. V., and Mirzabekov, A. D.. 1985. Primary organization of nucleosomes. J. Mol. Biol. 185:329–339
  • Shwarz, P. M., Felthauser, A., Fletcher, T. M., and Hansen, J. C.. 1996. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35:4009–4015
  • Simpson, R. T.. 1978. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531
  • Sollner-Web, B., and Felsenfeld, G.. 1975. A comparison of the digestion of nuclei chromatin by staphlococcal nuclease. Biochemistry 14:2915–2920
  • Struhl, K.. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606
  • Sun, X. L., Xu, Y. Z., Bellard, M., and Chambon, P.. 1986. Digestion of the chicken beta-globin gene chromatin with micrococcal nuclease reveals the presence of an altered nucleosomal array characterized by an atypical ladder of DNA fragments. EMBO J. 5:293–300
  • Syntichaki, P., and Thireos, G.. 1998. The Gcn5.Ada complex potentiates the histone acetyltransferase activity of Gcn5. J. Biol. Chem. 273:24414–24419
  • Thomas, J. O., Rees, C., and Finch, J. T.. 1992. Cooperative binding of the globular domains of histones H1 and H5 to DNA. Nucleic Acids Res. 20:187–194
  • Travers, A.. 1999. The location of the linker histone on the nucleosome. Trends Biochem. Sci. 24:4–7
  • Tse, C., Georgieva, E. I., Ruiz-Garcia, A. B., Sendra, R., and Hansen, J. C.. 1998. Gcn5p, a transcription-related histone acetyltransferase, acetylates nucleosomes and folded nucleosomal arrays in the absence of other protein subunits. J. Biol. Chem. 273:32388–32392
  • Turner, B. M., and O'Neill, L. P.. 1995. Histone acetylation in chromatin and chromosomes. Semin. Cell Biol. 6:229–236
  • Ura, K., Kurumizaka, H., Dimitrov, S., Almouzni, G., and Wolffe, A. P.. 1997. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J. 16:2096–2107
  • van Holde, K. E.. 1988. Chromatin. Springer-Verlag, New York, N.Y
  • Wang, L., Liu, L., and Berger, S. L.. 1998. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12:640–653
  • Wolffe, A. P., and Hayes, J. J.. 1999. Chromatin disruption and modification. Nucleic Acids Res. 27:711–720
  • Wolffe, A. P., and Kurumizaka, H.. 1998. The nucleosome: a powerful regulator of transcription. Prog. Nucleic Acid Res. Mol. Biol. 61:379–422
  • Workman, J. L., and Kingston, R. E.. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67:545–579
  • Wu, C.. 1997. Chromatin remodeling and the control of gene expression. J. Biol. Chem. 272:28171–28174
  • Yang, X.-J., Ogrryzko, V. V., Nishikawa, J., Howard, B. H., and Nakatani, Y.. 1996. A p300/CBP-associated factor that competes with adenoviral oncoprotein E1A. Nature 382:319–324

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.