17
Views
53
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Distinct Subcellular Localization Patterns Contribute to Functional Specificity of the Cln2 and Cln3 Cyclins of Saccharomyces cerevisiae

&
Pages 542-555 | Received 11 Aug 1999, Accepted 07 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Aris, J. P., and Blobel, G.. 1988. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107:17–31
  • Baldin, V., Lukas, J., Marcote, M. J., Pagano, M., and Draetta, G.. 1993. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7:812–821
  • Benton, B. K., Tinkelenberg, A., Gonzalez, I., and Cross, F. R.. 1997. Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis. Mol. Cell. Biol. 17:5067–5076
  • Cardosa, M. C., Leonhardt, H., and Nada-Ginard, B.. 1993. Reversal of terminal differentiation and control of DNA replication cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell 74:979–992
  • Chant, J., Corrado, K., Pringle, J. R., and Herskowitz, I.. 1991. Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1. Cell 65:1213–1224
  • Cross, F. R.. 1988. DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4675–4684
  • Cross, F. R., and Blake, C. M.. 1993. The yeast Cln3 protein is an unstable activator of Cdc28. Mol. Cell. Biol. 13:3266–3271
  • Cvrcková, F., and Nasmyth, K.. 1993. Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO J. 12:5277–5286
  • Di Como, C. J., Chang, H., and Arndt, K. T.. 1995. Activation of CLN1 and CLN2 G1 cyclin gene expression by BCK2. Mol. Cell. Biol. 15:1835–1846
  • Diehl, J. A., Cheng, M., Roussel, M. F., and Sherr, C. J.. 1998. Glycogen synthase kinase 3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 15:3499–3511
  • Diehl, J. A., and Sherr, C. J.. 1997. A dominant-negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. Mol. Cell. Biol. 17:7362–7374
  • Dirick, L., Böhm, T., and Nasmyth, K.. 1995. Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J. 14:4803–4813
  • Epstein, C. B., and Cross, F. R.. 1994. Genes that can bypass the CLN requirement for Saccharomyces cerevisiae cell cycle START. Mol. Cell. Biol. 14:2041–2047
  • Espinoza, F. H., Ogas, J., Herskowitz, I., and Morgan, D. O.. 1994. Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science 266:1388–1391
  • Feldman, R. M. R., Correll, C. C., Kaplan, K. B., and Deshaies, R. J.. 1997. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230
  • Fernandez-Sarabia, M. J., Sutton, A., Zhong, T., and Arndt, K. T.. 1992. SIT4 protein phosphatase is required for the normal accumulation of SWI4, CLN1, CLN2, and HCS26 RNAs during late G1. Genes Dev. 6:2417–2428
  • Fritz, C. C., and Green, M. R.. 1996. HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr. Biol. 6:848–854
  • Gietz, R. D., and Schiestl, R. H.. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263
  • Hadwiger, J. A., Wittenberg, C., Mendenhall, M. D., and Reed, S. I.. 1989. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex. Mol. Cell. Biol. 9:2034–2041
  • Hagting, A., Karlsson, C., Clute, P., Jackman, M., and Pines, J.. 1998. MPF localization is controlled by nuclear export. EMBO J. 17:4127–4138
  • Holmes, J. K., and Solomon, M. J.. 1996. A predictive scale for evaluating cyclin-dependent kinase substrates. A comparison of p34cdc2 and p33cdk2. J. Biol. Chem. 11:25240–25246
  • Jaspersen, S. L., Charles, J. F., and Morgan, D. O.. 1999. Inhibitory phosphorylation of the APC regulatory hct1 is controlled by the kinase cdc28 and the phosphatase cdc14. Curr. Biol. 9:227–236
  • Jin, P., Hardy, S., and Morgan, D. O.. 1998. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J. Cell Biol. 18:875–885
  • Kilmartin, J. V., and Fogg, J.. 1982. Partial purification of yeast spindle pole bodies Microtubules and microorganisms. Cappucinelli, P., and Morris, N. R. 157–170 Marcel Dekker, Inc., New York, N.Y
  • Knoblich, J. A., Sauer, K., Jones, L., Richardson, H., Saint, R., and Lehner, C. F.. 1994. Cyclin E controls S phase progression and its down regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77:107–120
  • Koch, C., and Nasmyth, K.. 1994. Cell cycle regulated transcription in yeast. Curr. Opin. Cell Biol. 6:451–459
  • Levine, K., Huang, K., and Cross, F. R.. 1996. Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities. Mol. Cell. Biol. 16:6794–6803
  • Levine, K., Oehlen, L. J. W. M., and Cross, F. R.. 1998. Isolation and characterization of new alleles of the cyclin-dependent kinase gene CDC28 with cyclin-specific functional and biochemical defects. Mol. Cell. Biol. 18:290–302
  • Lew, D. J., and Reed, S. I.. 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120:1305–1320
  • Li, J., Meyer, A. N., and Donoghue, D.. 1997. Nuclear localization of cyclin B1 mediates ints biological activity and is regulated by phosphorylation. Proc. Natl. Acad. Sci. USA 94:502–507
  • Lukas, J., Pagano, M., Staskova, Z., Draetta, G., and Bartek, J.. 1994. Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene 9:707–718
  • Maridor, G., Gallant, P., Golsteyn, R., and Nigg, E. A.. 1993. Nuclear localization of vertebrate cyclin A correlates with its ability to form complexes with cdk catalytic subunits. J. Cell Sci. 106:535–544
  • McInerny, C. J., Partridge, J. F., Mikesell, G. E., Creemer, D. P., and Breeden, L. L.. 1997. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11:1277–1288
  • Measday, V., Moore, L., Ogas, J., Tyers, M., and Andrews, B.. 1994. The PCL2 (ORFD)-PHO85 cyclin-dependent kinase complex: a cell cycle regulator in yeast. Science 266:1391–1395
  • Mendenhall, M. D.. 1993. An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259:216–219
  • Moore, J. D., Yang, J., Truant, R., and Kornbluth, S.. 1999. Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J. Cell Biol. 144:213–224
  • Morgan, D. O.. 1995. Principles of CDK regulation. Nature 374:131–134
  • Nash, R., Tokiwa, G., Anand, S., Erickson, K., and Futcher, A. B.. 1988. The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J. 7:4335–4346
  • Nelson, M., and Silver, P.. 1989. Context affects nuclear protein localization in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:384–389
  • Nishizawa, M., Kawasumi, M., Fujino, M., and Toh-e, A.. 1998. Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its promp degradation. Mol. Biol. Cell 9:2395–2405
  • Oehlen, L. J. W. M., and Cross, F. R.. 1994. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev. 8:1058–1070
  • Ogas, J., Andrews, B. J., and Herskowitz, I.. 1991. Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66:1015–1026
  • Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M., and Pagano, M.. 1995. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15:2612–2524
  • Pines, J., and Hunter, T.. 1994. The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J. 13:3772–3781
  • Pines, J., and Hunter, T.. 1991. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J. Cell Biol. 115:1–17
  • Richardson, H. E., Wittenberg, C., Cross, F., and Reed, S. I.. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133
  • Rout, M. P., and Kilmartin, J. V.. 1990. Components of the yeast spindle and spindle pole body. J. Cell Biol. 111:1913–1927
  • Schwab, M., Lutum, A. S., and Seufert, W.. 1997. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90:683–693
  • Schwob, E., Böhm, T., Mendenhall, M. D., and Nasmyth, K.. 1994. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244
  • Schwob, E., and Nasmyth, K.. 1993. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7:1160–1175
  • Sherman, F., Fink, G. R., and Hicks, J. B.. 1989. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Sikorski, R. S., and Hieter, P.. 1989. A system for shuttle vectors and yeast strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Srinivasan, J., Koszelak, M., Mendelow, M., Kwon, Y. G., and Lawrence, D. S.. 1995. The design of peptide based substrates for the cdc2 protein kinase. Biochem. J. 309:927–931
  • Stade, K., Ford, C. S., Guthrie, C., and Weis, K.. 1997. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050
  • Strambio-de-Castillia, C., Blobel, G., and Rout, M. P.. 1995. Isolation and characterization of nuclear envelopes from the yeast Saccharomyces. J. Cell Biol. 131:19–31
  • Stuart, D., and Wittenberg, C.. 1995. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev. 9:2780–2794
  • Toyoshima, F., Moriguchi, T., Wada, A., Fukuda, M., and Nishida, E.. 1998. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J. 17:2728–2735
  • Tyers, M.. 1996. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for CLN G1 cyclin function at Start. Proc. Natl. Acad. Sci. USA 93:7772–7776
  • Tyers, M., Tokiwa, G., and Futcher, B.. 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12:1955–1968
  • Tyers, M., Tokiwa, G., Nash, R., and Futcher, B.. 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1773–1784
  • Verma, R., Annan, R. S., Huddleston, M. J., Carr, S. A., Reynard, G., and Deshaies, R. J.. 1997. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278:455–460
  • Visintin, R., Prinz, S., and Amon, A.. 1998. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278:460–463
  • Wen, W., Meinkoth, J. L., Tsein, R. Y., and Taylor, S. S.. 1995. Identification of a signal for rapid export of proteins from the nucleus. Cell 82:463–473
  • Wittenberg, C., Sugimoto, K., and Reed, S. I.. 1990. G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62:225–237
  • Yaglom, J., Linskens, M. H. K., Sadis, S., Rubin, D. M., Futcher, B., and Finley, D.. 1995. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol. Cell. Biol. 15:731–740
  • Yang, J., Bardes, E. S., Moore, J. D., Brennan, J., Powers, M. A., and Kornbluth, S.. 1998. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 12:2131–2143
  • Zachariae, W., and Nasmyth, K.. 1996. TPR proteins required for anaphase progression mediate ubiquitination of mitotic B-type cyclins in yeast. Mol. Biol. Cell 7:791–801
  • Zachariae, W., Shevchenko, A., Andrews, P. D., Ciosk, R., Galova, M., Stark, M. J. R., Mann, M., and Nasmyth, K.. 1998. Mass spectrometric analysis of the anaphase-promoting complex of yeast: identification of a subunit related to cullins. Science 279:1216–1219

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.