13
Views
23
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Feedback Phosphorylation of the Yeast a-Factor Receptor Requires Activation of the Downstream Signaling Pathway from G Protein through Mitogen-Activated Protein Kinase

&
Pages 563-574 | Received 20 May 1999, Accepted 21 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Bender, A., Sprague, G. F.Jr.. 1986. Yeast peptide pheromones, a-factor and α-factor, activate a common response mechanism in their target cells. Cell 47:929–937
  • Boone, C., Davis, N. G., Sprague, G. F.Jr.. 1993. Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc. Natl. Acad. Sci. USA 90:9921–9925
  • Chen, Q., and Konopka, J. B.. 1996. Regulation of the G-protein-coupled α-factor pheromone receptor by phosphorylation. Mol. Cell. Biol. 16:247–257
  • Chu, D. S., Pishvaee, B., and Payne, G. S.. 1999. A modulatory role for clathrin light chain phosphorylation in Golgi membrane protein localization during vegetative growth and during the mating response of Saccharomyces cerevisiae. Mol. Biol. Cell 10:713–726
  • Clark-Lewis, I., Sanghera, J. S., and Pelech, S. L.. 1991. Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase. J. Biol. Chem. 266:15180–15184
  • Cole, G. M., Stone, D. E., and Reed, S. I.. 1990. Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway. Mol. Cell. Biol. 10:510–517
  • Cook, J. G., Bardwell, L., Kron, S. J., and Thorner, J.. 1996. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 10:2831–2848
  • Davis, N. G., Horecka, J. L., Sprague, G. F.Jr.. 1993. Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122:53–65
  • Dolan, J. W., and Fields, S.. 1990. Overproduction of the yeast STE12 protein leads to constitutive transcriptional induction. Genes Dev. 4:492–502
  • Elion, E. A., Grisafi, P. L., and Fink, G. R.. 1990. FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation. Cell 60:649–664
  • Feng, Y., Song, L. Y., Kincaid, E., Mahanty, S. K., and Elion, E. A.. 1998. Functional binding between Gβ and the LIM domain of Ste5 is required to activate the MEKK Ste11. Curr. Biol. 8:267–278
  • Fields, S., Chaleff, D. T., Sprague, G. F.Jr.. 1988. Yeast STE7, STE11, and STE12 genes are required for expression of cell-type-specific genes. Mol. Cell. Biol. 8:551–556
  • Fields, S., and Herskowitz, I.. 1987. Regulation by the yeast mating-type locus of STE12, a gene required for cell-type-specific expression. Mol. Cell. Biol. 7:3818–3821
  • Gartner, A., Jovanovic, A., Jeoung, D. I., Bourlat, S., Cross, F. R., and Ammerer, G.. 1998. Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo. Mol. Cell. Biol. 18:3681–3691
  • Hagen, D. C., McCaffrey, G., Sprague, G. F.Jr.. 1986. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc. Natl. Acad. Sci. USA 83:1418–1422
  • Hicke, L., and Riezman, H.. 1996. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287
  • Hicke, L., Zanolari, B., Pypaert, M., Rohrer, J., and Riezman, H.. 1997. Transport through the yeast endocytic pathway occurs through morphologically distinct compartments and requires an active secretory pathway and Sec18p/N-ethylmaleimide-sensitive fusion protein. Mol. Biol. Cell 8:13–31
  • Hicke, L., Zanolari, B., and Riezman, H.. 1998. Cytoplasmic tail phosphorylation of the α-factor receptor is required for its ubiquitination and internalization. J. Cell Biol. 141:349–358
  • Horecka, J., Sprague, G. F.Jr.. 1996. Identification and characterization of FAR3, a gene required for pheromone-mediated G1 arrest in Saccharomyces cerevisiae. Genetics 144:905–921
  • Hung, W., Olson, K. A., Breitkreutz, A., and Sadowski, I.. 1997. Characterization of the basal and pheromone-stimulated phosphorylation states of Ste12p. Eur. J. Biochem. 245:241–251
  • Inouye, C., Dhillon, N., and Thorner, J.. 1997. Ste5 RING-H2 domain: role in Ste4-promoted oligomerization for yeast pheromone signaling. Science 278:103–106
  • Jarvis, E. E., Hagen, D. C., Sprague, G. F.Jr.. 1988. Identification of a DNA segment that is necessary and sufficient for α-specific gene control in Saccharomyces cerevisiae: implications for regulation of α-specific and a-specific genes. Mol. Cell. Biol. 8:309–320
  • Jenness, D. D., and Spatrick, P.. 1986. Down regulation of the α-factor pheromone receptor in S. cerevisiae. Cell 46:345–353
  • Kirkman-Correia, C., Stroke, I. L., and Fields, S.. 1993. Functional domains of the yeast STE12 protein, a pheromone-responsive transcriptional activator. Mol. Cell. Biol. 13:3765–3772
  • Konopka, J. B., Jenness, D. D., and Hartwell, L. H.. 1988. The C-terminus of the S. cerevisiae α-pheromone receptor mediates an adaptive response to pheromone. Cell 54:609–620
  • Kunkel, T. A., Roberts, J. D., and Zakour, R. A.. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382
  • Kurjan, J.. 1985. α-Factor structural gene mutations in Saccharomyces cerevisiae: effects on α-factor production and mating. Mol. Cell. Biol. 5:787–796
  • Leberer, E., Dignard, D., Harcus, D., Thomas, D. Y., and Whiteway, M.. 1992. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J. 11:4815–4824
  • Leberer, E., Thomas, D. Y., and Whiteway, M.. 1997. Pheromone signalling and polarized morphogenesis in yeast. Curr. Opin. Genet. Dev. 7:59–66
  • Lefkowitz, R. J.. 1998. G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273:18677–18680
  • Madhani, H. D., Styles, C. A., and Fink, G. R.. 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673–684
  • Neiman, A. M., and Herskowitz, I.. 1994. Reconstitution of a yeast protein kinase cascade in vitro: activation of the yeast MEK homologue STE7 by STE11. Proc. Natl. Acad. Sci. USA 91:3398–3402
  • Nomoto, S., Nakayama, N., Arai, K., and Matsumoto, K.. 1990. Regulation of the yeast pheromone response pathway by G protein subunits. EMBO J. 9:691–696
  • Peter, M., Gartner, A., Horecka, J., Ammerer, G., and Herskowitz, I.. 1993. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747–760
  • Peter, M., and Herskowitz, I.. 1994. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265:1228–1231
  • Pitcher, J. A., Freedman, N. J., and Lefkowitz, R. J.. 1998. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67:653–692
  • Pryciak, P. M., and Huntress, F. A.. 1998. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gβγ complex underlies activation of the yeast pheromone response pathway. Genes Dev. 12:2684–2697
  • Ramer, S. W., Elledge, S. J., and Davis, R. W.. 1992. Dominant genetics using a yeast genomic library under the control of a strong inducible promoter. Proc. Natl. Acad. Sci. USA 89:11589–11593
  • Raths, S., Rohrer, J., Crausaz, F., and Riezman, H.. 1993. end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J. Cell Biol. 120:55–65
  • Reneke, J. E., Blumer, K. J., Courchesne, W. E., and Thorner, J.. 1988. The carboxy-terminal segment of the yeast α-factor receptor is a regulatory domain. Cell 55:221–234
  • Robinson, L. C., Hubbard, E. J., Graves, P. R., DePaoli-Roach, A. A., Roach, P. J., Kung, C., Haas, D. W., Hagedorn, C. H., Goebl, M., Culbertson, M. R. et al. 1992. Yeast casein kinase I homologues: an essential gene pair. Proc. Natl. Acad. Sci. USA 89:28–32
  • Rohrer, J., Benedetti, H., Zanolari, B., and Riezman, H.. 1993. Identification of a novel sequence mediating regulated endocytosis of the G protein-coupled α-pheromone receptor in yeast. Mol. Biol. Cell 4:511–521
  • Roth, A. F., and Davis, N. G.. 1996. Ubiquitination of the yeast a-factor receptor. J. Cell Biol. 134:661–674
  • Roth, A. F., Sullivan, D. M., and Davis, N. G.. 1998. A large PEST-like sequence directs the ubiquitination, endocytosis, and vacuolar degradation of the yeast a-factor receptor. J. Cell Biol. 142:949–961
  • Schandel, K. A., and Jenness, D. D.. 1994. Direct evidence for ligand-induced internalization of the yeast α-factor pheromone receptor. Mol. Cell. Biol. 14:7245–7255
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Sprague, G. F.Jr., and Thorner, J. W.. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae The molecular and cellular biology of the yeast Saccharomyces cerevisiae: gene expression Jones, E. W., Pringle, J. R., and Broach, J. R. 2:657–744 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Stevenson, B. J., Rhodes, N., Errede, B., Sprague, G. F.Jr.. 1992. 1992. Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev. 6:1293–1304
  • Tedford, K., Kim, S., Sa, D., Stevens, K., and Tyers, M.. 1997. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr. Biol. 7:228–238
  • Valtz, N., Peter, M., and Herskowitz, I.. 1995. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J. Cell Biol. 131:863–873
  • Vancura, A., Sessler, A., Leichus, B., and Kuret, J.. 1994. A prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast. J. Biol. Chem. 269:19271–19278
  • Velculescu, V. E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. A., Bassett, D. E.Jr., Hieter, P., Vogelstein, B., and Kinzler, K. W.. 1997. Characterization of the yeast transcriptome. Cell 88:243–251
  • Wang, P. C., Vancura, A., Mitcheson, T. G., and Kuret, J.. 1992. Two genes in Saccharomyces cerevisiae encode a membrane-bound form of casein kinase-1. Mol. Biol. Cell 3:275–286
  • Whiteway, M., Hougan, L., and Thomas, D. Y.. 1990. Overexpression of the STE4 gene leads to mating response in haploid Saccharomyces cerevisiae. Mol. Cell. Biol. 10:217–222
  • Whiteway, M. S., Wu, C., Leeuw, T., Clark, K., Fourest-Lieuvin, A., Thomas, D. Y., and Leberer, E.. 1995. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p. Science 269:1572–1575
  • Zanolari, B., Raths, S., Singer-Kruger, B., and Riezman, H.. 1992. Yeast pheromone receptor endocytosis and hyperphosphorylation are independent of G protein-mediated signal transduction. Cell 71:755–763

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.