48
Views
158
CrossRef citations to date
0
Altmetric
Gene Expression

A Nuclear 3′-5′ Exonuclease Involved in mRNA Degradation Interacts with Poly(A) Polymerase and the hnRNA Protein Npl3p

&
Pages 604-616 | Received 26 Jul 1999, Accepted 07 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Allmang, C., Petfalski, E., Podtelejnikov, A., Mann, M., Tollervey, D., and Mitchell, P.. 1999. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev. 13:2148–2158
  • Anderson, J. S. J., and Parker, R. P.. 1998. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17:1497–1506
  • Atkin, A. L., Altamura, N., Leeds, P., and Culbertson, M. R.. 1995. The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm. Mol. Biol. Cell 6:611–625
  • Bai, C., and Elledge, S. J.. 1997. Gene identification using the yeast two-hybrid system. Methods Enzymol. 283:141–156
  • Bartel, P. L., and Fields, S.. 1995. Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol. 254:241–263
  • Beelman, C. A., Stevens, A., Caponigro, G., LaGrandeur, T. E., Hatfield, L., Fortner, D. M., and Parker, R.. 1996. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382:642–646
  • Beese, L. S., and Steitz, T. A.. 1991. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10:25–33
  • Benard, L., Carroll, K., Valle, R. C., and Wickner, R. B.. 1998. Ski6p is a homolog of RNA-processing enzymes that affects translation of non-poly(A) mRNAs and 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 18:2688–2696
  • Boeck, R., Tarun, S.Jr., Rieger, M., Deardorff, J. A., Muller-Auer, S., and Sachs, A. B.. 1996. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271:432–438
  • Briggs, M. W., Burkard, K. T., and Butler, J. S.. 1998. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J. Biol. Chem. 273:13255–13263
  • Briggs, M. W., and Butler, J. S.. 1996. RNA polymerase III defects suppress a conditional-lethal poly(A) polymerase mutation in Saccharomyces cerevisiae. Genetics 143:1149–1161
  • Butler, J. S., Briggs, M. W., and Proweller, A.. 1997. Analysis of polyadenylation phenotypes in Saccharomyces cerevisiae mRNA formation and function. Richter, J. 111–124 Academic Press, New York, N.Y
  • Butler, J. S., and Platt, T.. 1988. RNA processing generates the mature 3′ end of yeast CYC1 messenger RNA in vitro. Science 242:1270–1274
  • Butler, J. S., Sadhale, P. P., and Platt, T.. 1990. RNA processing in vitro produces mature 3′ ends of a variety of Saccharomyces cerevisiae mRNAs. Mol. Cell. Biol. 10:2599–2605
  • Cali, B. M., and Anderson, P.. 1998. mRNA surveillance mitigates genetic dominance in Caenorhabditis elegans. Mol. Gen. Genet. 260:176–184
  • Caponigro, G., and Parker, R.. 1995. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 9:2421–2432
  • Cudny, H., Zaniewski, R., and Deutscher, M. P.. 1981. Escherichia coli RNase D. Catalytic properties and substrate specificity of Escherichia coli RNase D. Purification and structural characterization of a putative processing nuclease. J. Biol. Chem. 256:5633–5637
  • Culbertson, M. R.. 1999. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet. 15:74–80
  • Curtis, D., Lehman, R., and Zamore, P. D.. 1995. Translational regulation in development. Cell 81:171–178
  • Decker, C. J.. 1998. The exosome: a versatile RNA processing machine. Curr. Biol. 8:R238–R240
  • Decker, C. J., and Parker, R.. 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7:1632–1643
  • del Olmo, M., Mizrahi, N., Gross, S., and Moore, C. L.. 1997. The Uba2 and Ufd1 proteins of Saccharomyces cerevisiae interact with poly(A) polymerase and affect the polyadenylation activity of cell extracts. Mol. Gen. Genet. 255:209–218
  • Derbyshire, V., Freemont, P. S., Sanderson, M. R., Beese, L., Friedman, J. M., Joyce, C. M., and Steitz, T. A.. 1988. Genetic and crystallographic studies of the 3′,5′-exonucleolytic site of DNA polymerase I. Science 240:199–201
  • Edskes, H. K., Ohtake, Y., and Wickner, R. B.. 1998. Mak21p of Saccharomyces cerevisiae, a homolog of human CAATT-binding protein, is essential for 60S ribosomal subunit biogenesis. J. Biol. Chem. 273:28912–28920
  • Flach, J., Bossie, M., Vogel, J., Corbett, A., Jinks, T., Willins, D. A., and Silver, P. A.. 1994. A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm. Mol. Cell. Biol. 14:8399–8407
  • Gallie, D. R.. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5:2108–2116
  • Gietz, R. D., and Sugino, A.. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534
  • Gillian-Daniel, D. L., Gray, N. K., Astrom, J., Barkoff, A., and Wickens, M.. 1998. Modifications of the 5′ cap of mRNAs during Xenopus oocyte maturation: independence from changes in poly(A) length and impact on translation. Mol. Cell. Biol. 18:6152–6163
  • Guldener, U., Heck, S., Fielder, T., Beinhauer, J., and Hegemann, J. H.. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24:2519–2524
  • He, F., Peltz, S. W., Donahue, J. L., Rosbash, M., and Jacobson, A.. 1993. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1− mutant. Proc. Natl. Acad. Sci. USA 90:7034–7038
  • Henry, M., Borland, C. Z., Bossie, M., and Silver, P. A.. 1996. Potential RNA binding proteins in Saccharomyces cerevisiae identified as suppressors of temperature-sensitive mutations in NPL3. Genetics 142:103–115
  • Herrick, D., Parker, R., and Jacobson, A.. 1990. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2269–2284
  • Heyer, W. D., Johnson, A. W., Reinhart, U., and Kolodner, R. D.. 1995. Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol. Cell. Biol. 15:2728–2736
  • Hsu, C. L., and Stevens, A.. 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13:4826–4835
  • Jacobson, A., and Peltz, S. W.. 1996. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65:693–739
  • Johnson, A. W.. 1997. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 17:6122–6130
  • Johnson, A. W., and Kolodner, R. D.. 1995. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell. Biol. 15:2719–2727
  • Kessler, M. M., Henry, M. F., Shen, E., Zhao, J., Gross, S., Silver, P. A., and Moore, C. L.. 1997. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast. Genes Dev. 11:2545–2556
  • Korner, C. G., Wormington, M., Muckenthaler, M., Schneider, S., Dehlin, E., and Wahle, E.. 1998. The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17:5427–5437
  • Kuge, H., and Richter, J. D.. 1995. Cytoplasmic 3′ poly(A) addition induces 5′ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J. 14:6301–6310
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  • Larimer, F. W., and Stevens, A.. 1990. Disruption of the gene XRN1, coding for a 5′----3′ exoribonuclease, restricts yeast cell growth. Gene 95:85–90
  • Lee, M. S., Henry, M., and Silver, P. A.. 1996. A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes Dev. 10:1233–1246
  • Leeds, P., Peltz, S. W., Jacobson, A., and Culbertson, M. R.. 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5:2303–2314
  • Masison, D. C., Blanc, A., Ribas, J. C., Carroll, K., Sonenberg, N., and Wickner, R. B.. 1995. Decoying the cap-mRNA degradation system by a double-stranded RNA virus and poly(A)-mRNA surveillance by a yeast antiviral system. Mol. Cell. Biol. 15:2763–2771
  • Mian, I. S.. 1997. Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res. 25:3187–3195
  • Mitchell, D. A., Marshall, T. K., and Deschenes, R. J.. 1993. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–722
  • Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D.. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91:457–466
  • Moser, M. J., Holley, W. R., Chatterjee, A., and Mian, I. S.. 1997. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res. 25:5110–5118
  • Muhlrad, D., Decker, C. J., and Parker, R.. 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8:855–866
  • Muhlrad, D., and Parker, R.. 1994. Premature translational termination triggers mRNA decapping. Nature 370:578–581
  • Niedenthal, R. K., Riles, L., Johnston, M., and Hegemann, J. H.. 1996. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786
  • Ohtake, Y., and Wickner, R. B.. 1995. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 15:2772–2781
  • Patel, D., and Butler, J. S.. 1992. Conditional defect in mRNA 3′ end processing caused by a mutation in the gene for poly(A) polymerase. Mol. Cell. Biol. 12:3297–3304
  • Preker, P. J., Lingner, J., Minvielle-Sebastia, L., and Keller, W.. 1995. The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell 81:379–389
  • Proweller, A., and Butler, J. S.. 1996. Ribosomal association of poly(A)-binding protein in poly(A)-deficient Saccharomyces cerevisiae. J. Biol. Chem. 271:10859–10865
  • Proweller, A., and Butler, J. S.. 1997. Ribosome concentration contributes to discrimination against poly(A)− mRNA during translation initiation in Saccharomyces cerevisiae. J. Biol. Chem. 272:6004–6010
  • Proweller, A., and Butler, S.. 1994. Efficient translation of poly(A)-deficient mRNAs in Saccharomyces cerevisiae. Genes Dev. 8:2629–2640
  • Pulak, R., and Anderson, P.. 1993. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7:1885–1897
  • Ridley, S. P., Sommer, S. S., and Wickner, R. B.. 1984. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol. Cell. Biol. 4:761–770
  • Sachs, A. B., and Davis, R. W.. 1989. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58:857–867
  • Schiestl, R. H., and Gietz, R. D.. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346
  • Singleton, D. R., Chen, S., Hitomi, M., Kumagai, C., and Tartakoff, A. M.. 1995. A yeast protein that bidirectionally affects nucleocytoplasmic transport. J. Cell Sci. 108:265–272
  • Skryabin, K. G., Eldarov, M. A., Larionov, V. L., Bayev, A. A., Klootwijk, J., de Regt, V. C., Veldman, G. M., Planta, R. J., Georgiev, O. I., and Hadjiolov, A. A.. 1984. Structure and function of the nontranscribed spacer regions of yeast rDNA. Nucleic Acids Res. 12:2955–2968
  • Tarun, S. Z.Jr., and Sachs, A. B.. 1995. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9:2997–3007
  • Tarun, S. Z.Jr., and Sachs, A. B.. 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15:7168–7177
  • Wickens, M., Anderson, P., and Jackson, R. J.. 1997. Life and death in the cytoplasm: messages from the 3′ end. Curr. Opin. Genet. Dev. 7:220–232
  • Wickner, R. B.. 1996. Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol. Rev. 60:250–265
  • Wiederkehr, T., Pretot, R. F., and Minvielle-Sebastia, L.. 1998. Synthetic lethal interactions with conditional poly(A) polymerase alleles identify LCP5, a gene involved in 18S rRNA maturation. RNA 4:1357–1372
  • Wilson, S. M., Datar, K. V., Paddy, M. R., Swedlow, J. R., and Swanson, M. S.. 1994. Characterization of nuclear polyadenylated RNA-binding proteins in Saccharomyces cerevisiae. J. Cell Biol. 127:1173–1184
  • Zanchin, N. I. T., and Goldfarb, D. S.. 1999. Nip7p interacts with Nop8p, an essential nucleolar protein required for 60S ribosome biogenesis, and the exosome subunit Rrp43p. Mol. Cell. Biol. 19:1518–1525
  • Zhang, J. R., and Deutscher, M. P.. 1988. Escherichia coli RNase D: sequencing of the rnd structural gene and purification of the overexpressed protein. Nucleic Acids Res. 16:6265–6278

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.