38
Views
108
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Inhibition of TATA-Binding Protein Function by SAGA Subunits Spt3 and Spt8 at Gcn4-Activated Promoters

, , , , &
Pages 634-647 | Received 03 Aug 1999, Accepted 13 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. 1994. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y
  • Bannister, A. J., and Kouzarides, T.. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643
  • Barlev, N. A., Candau, R., Wang, L., Darpino, P., Silverman, N., and Berger, S. L.. 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270:19337–19344
  • Berger, S. L., Piña, B., Silverman, N., Marcus, G. A., Agapite, J., Regier, J. L., Triezenberg, S. J., and Guarente, L.. 1992. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251–265
  • Birck, C., Poch, O., Romier, C., Ruff, M., Mengus, G., Lavigne, A.-C., Davidson, I., and Moras, D.. 1998. Human TAFII28 and TAFII18 interact through a canonical histone fold encoded by atypical evolutionary conserved sequence motifs also found in the SPT3 TAFII family. Cell 94:239–249
  • Brandl, C., Furlanetto, A., Martens, J., and Hamilton, K.. 1993. Characterization of NGG1, a novel yeast gene required for glucose repression of GAL4p-regulated transcription. EMBO J. 12:5255–5265
  • Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y., and Allis, C. D.. 1996. Tetrahymena histone acetyltransferase A: a transcriptional co-activator linking gene expression to histone acetylation. Cell 84:843–851
  • Burley, S. K., and Roeder, R. G.. 1996. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65:769–799
  • Burley, S. K., and Roeder, R. G.. 1998. TATA box mimicry by TFIID: autoinhibition of PolII transcription. Cell 94:551–553
  • Candau, R., and Berger, S. L.. 1996. Structural and functional analysis of yeast putative adaptors: evidence for an adaptor complex in vivo. J. Biol. Chem. 271:5237–5245
  • Candau, R., Moore, P. A., Wang, L., Barlev, N., Ying, C. Y., Rosen, C. A., and Berger, S. L.. 1996. Identification of functionally conserved human homologues of the yeast adaptors ADA2 and GCN5. Mol. Cell. Biol. 16:593–602
  • Chiang, Y. C., Komarnitsky, P., Chase, D., and Denis, C. L.. 1996. ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J. Biol. Chem. 271:32359–32365
  • Collart, M. A.. 1996. The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters. Mol. Cell. Biol. 16:6668–6676
  • Drysdale, C. M., Jackson, B. M., McVeigh, R., Klebanow, E. R., Bai, Y., Kokubo, T., Swanson, M., Nakatani, Y., Weil, P. A., and Hinnebusch, A. G.. 1998. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol. Cell. Biol. 18:1711–1724
  • Eisenmann, D. M., Arndt, K. M., Ricupero, S. L., Rooney, J. W., and Winston, F.. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:1319–1331
  • Eisenmann, D. M., Chapon, C., Roberts, S. M., Dollard, C., and Winston, F.. 1994. The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 137:647–657
  • Eisenmann, D. M., Dollard, C., and Winston, F.. 1989. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58:1183–1191
  • Feaver, W. J., Henry, N. L., Bushnell, D. A., Sayre, M. H., Brickner, J. H., Gileadi, O., and Kornberg, R. D.. 1994. Yeast TFIIE: cloning, expression and homology to vertebrate proteins. J. Biol. Chem. 269:27549–27553
  • Gansheroff, L. J., Dollard, C., Tan, P., and Winston, F.. 1995. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics 139:523–536
  • Georgakopoulos, T., and Thireos, G.. 1992. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152
  • Goppelt, A., Stelzer, G., Lottspeich, F., and Meisterernst, M.. 1996. A mechanism for repression of class II gene transcription through specific binding of NC2 to TPB-promoter complexes via heterodimeric histone fold domains. EMBO J. 15:3105–3116
  • Grant, P. A., Duggan, L., Côté, J., Roberts, S. M., Brownell, J. E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C. D., Winston, F., Berger, S. L., and Workman, J. L.. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11:1640–1650
  • Grant, P. A., Schieltz, D., Pray-Grant, M. G., Steger, D. J., Reese, J. C., Yates, J. R.III, and Workman, J. L.. 1998. A subset of TAFIIs are integral components of the SAGA complex required for nucleosome acetylation and transcription stimulation. Cell 94:45–53
  • Grant, P. A., Sterner, D. E., Duggan, L. J., Workman, J. L., and Berger, S. L.. 1998. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8:193–197
  • Gregory, P. D., Schmid, A., Zavari, M., Liu, L., Berger, S. L., and Hörz, W.. 1998. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol. Cell 1:495–505
  • Hahn, S., Buratowski, S., Sharp, P. A., and Guarente, L.. 1989. Isolation of the gene encoding the yeast TATA binding protein TFIID: a gene identical to the SPT15 suppressor of Ty element insertions. Cell 58:1173–1181
  • Harlow, E., and Lane, I.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Hoffmann, A., Chiang, C.-M., Oelgeschläger, T., Xie, X., Burley, S. K., Nakatani, Y., and Roeder, R. G.. 1996. A histone octamer-like structure within TFIID. Nature 380:356–359
  • Horiuchi, J., Silverman, N., Marcus, G. A., and Guarente, L.. 1995. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol. 15:1203–1209
  • Horiuchi, J., Silverman, N., Piña, B., Marcus, G. A., and Guarente, L.. 1997. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol. Cell. Biol. 17:3220–3228
  • Inostroza, J. A., Mermelstein, F. H., Ha, I., Lane, W. S., and Reinberg, D.. 1992. Dr1, a TATA-binding protein–associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489
  • Iyer, V., and Struhl, K.. 1996. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5208–5212
  • Kokubo, T., Yamashita, S., Horikoshi, M., Roeder, R. G., and Nakatani, Y.. 1994. Interaction between the N-terminal domain of the 230-kDa subunit and the TATA box-binding subunit of TFIID negatively regulates TATA-box binding. Proc. Natl. Acad. Sci. USA 91:3520–3524
  • Kuo, M.-H., Zhou, J., Jambeck, P., Churchill, M. E. A., and Allis, C. D.. 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12:627–639
  • Lieberman, P. M., and Berk, A. J.. 1991. The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev. 5:2441–2454
  • Liu, D., Ishima, R., Tong, K. I., Bagby, S., Kokubo, T., Muhandiram, D. R., Kay, L. E., Nakatani, Y., and Ikura, M.. 1998. Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94:573–583
  • Longtine, M. S., McKenzie, A.III, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961
  • Madison, J. M., and Winston, F.. 1997. Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:287–295
  • Marcus, G. A., Horiuchi, J., Silverman, N., and Guarente, L.. 1996. ADA5/SPT20 links the ADA and SPT genes, which are involved in yeast transcription. Mol. Cell. Biol. 16:3197–3205
  • Marcus, G. A., Silverman, N., Berger, S. L., Horiuchi, J., and Guarente, L.. 1994. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13:4807–4815
  • Meisterernst, M., and Roeder, R. G.. 1991. Family of proteins that interact with TFIID and regulate promoter activity. Cell 67:557–567
  • Mizzen, C. A., Yang, X.-J., Kokubo, T., Brownell, J. E., Bannister, A. J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S. L., Kouzarides, T., Nakatani, Y., and Allis, C. D.. 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270
  • Ogryzko, V. V., Kotani, T., Zhang, X., Schiltz, R. L., Howard, T., Yang, X.-J., Howard, B. H., Qin, J., and Nakatani, Y.. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44
  • Ogryzko, V. V., Schlitz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Ozer, J., Lezina, L. E., Ewing, J., Audi, S., and Lieberman, P. M.. 1998. Association of transcription factor IIA with TATA binding protein is required for transcriptional activation of a subset of promoters and cell cycle progression in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:2559–2570
  • Piña, B., Berger, S., Marcus, G. A., Silverman, N., Agapite, J., and Guarente, L.. 1993. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol. Cell. Biol. 13:5981–5989
  • Reese, J. C., Apone, L., Walker, S. S., Griffin, L. A., and Green, M. R.. 1994. Yeast TAFIIS in a multisubunit complex required for activated transcription. Nature 371:523–527
  • Roberts, S. G., Choy, B., Walker, S. S., Lin, Y. S., and Green, M. R.. 1995. A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Curr. Biol. 5:508–516
  • Roberts, S. M., and Winston, F.. 1997. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147:451–465
  • Roberts, S. M., and Winston, F.. 1996. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:3206–3213
  • Rose, M. D., Winston, F., and Hieter, P.. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Rothstein, R. J.. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211
  • Saleh, A., Lang, V., Cook, R., and Brandl, C. J.. 1997. Identification of native complexes containing the yeast coactivator/repressor proteins NGG1/ADA3 and ADA2. J. Biol. Chem. 272:5571–5578
  • Saleh, A., Schieltz, D., Ting, N., McMahon, S. B., Litchfield, D. W., Yates, J. R.III, Lees-Miller, S. P., Cole, M. D., and Brandl, C. J.. 1998. Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes. J. Biol. Chem. 273:26559–26565
  • Sawadogo, M., and Roeder, R.. 1985. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43:165–175
  • Sayre, M. H., Tschochner, H., and Kornberg, R. D.. 1992. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J. Biol. Chem. 267:23376–23382
  • Silverman, N., Agapite, J., and Guarente, L.. 1994. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription. Proc. Natl. Acad. Sci. USA 91:11665–11668
  • Stargell, L. A., and Struhl, K.. 1996. Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet. 12:311–315
  • Sterner, D. E., Grant, P. A., Roberts, S. M., Duggan, L. J., Belotserkovskaya, R., Pacella, L. A., Winston, F., Workman, J. L., and Berger, S. L.. 1999. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TBP binding. Mol. Cell. Biol. 19:86–98
  • Struhl, K.. 1986. Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms. Mol. Cell. Biol. 6:3847–3853
  • Utley, R. T., Ikeda, K., Grant, P. A., Côté, J., Steger, D. J., Eberharter, A., John, S., and Workman, J. L.. 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394:498–502
  • Vassilev, A., Yamauchi, J., Kotani, T., Prives, C., Avantaggiati, M. L., Qin, J., and Nakatani, Y.. 1998. The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol. Cell 2:869–875
  • Wade, P. A., and Wolffe, A. P.. 1997. Histone acetyltransferases in control. Curr. Biol. 7:82–84
  • Wang, L., Liu, L., and Berger, S. L.. 1998. Critical residues for histone acetylation by GCN5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12:640–653
  • Winston, F.. 1992. Analysis of SPT genes: a genetic approach toward analysis of TFIID, histones, and other transcription factors of yeast Transcriptional regulation. McKnight, S. L., and Yamamoto, K. R. 1271–1293 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Winston, F., Dollard, C., and Ricupero-Hovasse, S. L.. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55
  • Winston, F., Durbin, K. J., and Fink, G. R.. 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39:675–682
  • Xie, X., Kokubo, T., Cohen, S. L., Mirza, U. A., Hoffmann, A., Chait, B. T., Roeder, R. G., Nakatani, Y., and Burley, S. K.. 1996. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380:316–322
  • Yang, X.-J., Ogryzko, V. V., Nishikawa, J., Howard, B. H., and Nakatani, Y.. 1996. A p300/CBP-associated factor that competes with the adenoviral E1A oncoprotein. Nature 382:319–324

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.