14
Views
53
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Induction of Human Fetal Globin Gene Expression by a Novel Erythroid Factor, NF-E4

, , , , &
Pages 7662-7672 | Received 23 May 2000, Accepted 18 Jul 2000, Published online: 28 Mar 2023

REFERENCES

  • Acland, P., Dixon, M., Peters, G., and Dickson, C.. 1990. The subcellular fate of the Int-2 oncoprotein is determined by choice of initiation codon. Nature 343:662–665
  • Amrolia, P. J., Cunningham, J. M., and Jane, S. M.. 1998. Maximal activity of an erythroid-specific enhancer requires the presence of specific protein binding sites in linked promoters. J. Biol. Chem. 273:13593–13598
  • Anderson, K. P., Lloyd, J. A., Ponce, E., Crable, S. C., Neumann, J. C., and Lingrel, J. B.. 1993. Regulated expression of the human β-globin gene in transgenic mice requires an upstream globin or nonglobin promoter. Mol. Biol. Cell 4:1077–1085
  • Armstrong, J. A., Bieker, J. J., and Emerson, B. M.. 1998. A SWI/SNF-related chromatin remodelling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95:93–104
  • Asano, H., Li, X. S., and Stamatoyannopoulos, G.. 1999. FKLF, a novel Krüppel-like factor that activates human embryonic and fetal β-like globin genes. Mol. Cell. Biol. 19:3571–3579
  • Boeck, R., and Kolakofsky, D.. 1994. Positions +5 and +6 can be major determinants of the efficiency of non-AUG initiation codons for protein synthesis. EMBO J. 13:3608–3617
  • Bruening, W., and Pelletier, J.. 1996. A non-AUG translational initiation event generates novel WT1 isoforms. J. Biol. Chem. 271:8646–8654
  • Choi, O. R. B., and Engel, J. D.. 1988. Developmental regulation of β-globin gene switching. Cell 55:17–26
  • Ciavatta, D. J., Ryan, T. M., Farmer, S. C., and Townes, T. M.. 1995. Mouse model of human β0-thalassemia: targeted deletion of the mouse βmaj and βmin-globin genes in embryonic stem cells. Proc. Natl. Acad. Sci. USA 92:9259–9263
  • Cosset, F.-L., Takeuchi, Y., Battini, J.-L., Weiss, R. A., and Collins, M. K. L.. 1995. High-titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 69:7430–7436
  • Dignam, J. D.. 1990. Preparation of extracts from higher eukaryotes. Methods Enzymol. 182:194–203
  • Donze, D., Townes, T. M., and Bieker, J. J.. 1995. Role of erythroid Kruppel-like factor in human γ- to β-globin switching. J. Biol. Chem. 270:1955–1959
  • Epner, E., Reik, A., Cimbora, D., Telling, A., Bender, M. A., Fiering, S., Enver, T., Martin, D. I. K., Kennedy, M., Keller, G., and Groudine, M.. 1998. The β-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse β-globin locus. Mol. Cell 2:447–455
  • Fields, S., and Song, O.. 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245–246
  • Forrester, W. C., Epner, E., Driscoll, M. C., Enver, T., Brice, M., Papayannopoulou, T., and Groudine, M.. 1990. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev. 4:1637–1649
  • Forrester, W. C., Thompson, C., Elder, J. T., and Groudine, M.. 1986. A developmentally stable chromatin structure in the human β-globin gene cluster. Proc. Natl. Acad. Sci. USA 83:1359–1363
  • Froesch, B. A., Takayama, S., and Reed, J. C.. 1998. BAG-1L protein enhances androgen receptor function. J. Biol. Chem. 273:11660–11666
  • Gaensler, K. M. L., Kitamura, M., and Kan, Y. W.. 1993. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human β-globin locus in transgenic mice. Proc. Natl. Acad. Sci. USA 90:11381–11385
  • Gallarda, J. L., Foley, K. P., Yang, Z., and Engel, J. D.. 1989. The β-globin stage selector element factor is erythroid-specific promoter/enhancer binding protein NF-E4. Genes Dev. 3:1845–1859
  • Grosveld, F., van Assendelft, G. B., Greaves, D. R., and Kollias, G.. 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51:975–985
  • Gumucio, D. L., Blanchard-McQuate, K. L., Heilstedt-Williamson, H., Tagle, D. A., Gray, T. A., Tarle, S. A., Gragowski, L., Goodman, M., Slightom, J. L., and Collins, F. S.. 1991. Gamma-globin gene regulation: evolutionary approaches The regulation of hemoglobin switching. Proceedings of the Seventh Conference on Hemoglobin Switching. Stamatoyannopoulos, G., and Nienhuis, A. W. 277–289 The Johns Hopkins University Press, Baltimore, Md
  • Gumucio, D. L., Shelton, D. A., Bailey, W. J., Slightom, J. L., and Goodman, M.. 1993. Phylogenetic footprinting reveals unexpected complexity in trans factor binding upstream from the ɛ-globin gene. Proc. Natl. Acad. Sci. USA 90:6018–6022
  • Hann, S. R., Sloan-Brown, K., and Spotts, G. D.. 1992. Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev. 6:1229–1240
  • Hawley, R. G., Lieu, F. H. L., Fong, A. Z. C., and Hawley, T. S.. 1994. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1:136–138
  • Holmes, M. L., Haley, J. D., Cerruti, L., Zhou, W.-L., Zogos, H., Smith, D. E., Cunningham, J. M., and Jane, S. M.. 1999. Identification of Id2 as a globin regulatory protein by representational difference analysis of K562 cells induced to express γ-globin with a fungal compound. Mol. Cell. Biol. 19:4182–4190
  • Jane, S. M., and Cunningham, J. M.. 1998. Understanding fetal globin gene expression: a step towards effective HbF reactivation in hemoglobinopathies. Br. J. Hematol. 102:415–422
  • Jane, S. M., Gumucio, D. L., Ney, P. A., Cunningham, J. M., and Nienhuis, A. W.. 1993. Methylation enhanced binding of Sp1 to the stage selector element of the human γ-globin gene promoter may regulate developmental specificity of expression. Mol. Cell. Biol. 13:3272–3281
  • Jane, S. M., Ney, P. A., Vanin, E. F., Gumucio, D. L., and Nienhuis, A. W.. 1992. Identification of a stage selector element in the human γ-globin gene promoter that fosters preferential interaction with the 5′ HS2 enhancer when in competition with the β-promoter. EMBO J. 11:2961–2969
  • Jane, S. M., Nienhuis, A. W., and Cunningham, J. M.. 1995. Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein. EMBO J. 14:97–105
  • Kim, C. H., Heath, C., Bertuch, A., and Hansen, U.. 1987. Specific stimulation of simian virus 40 late transcription in vitro by a cellular factor binding the simian virus 40 21-base-pair repeat promoter element. Proc. Natl. Acad. Sci. USA 84:6025–6029
  • Kioussis, D., Vanin, E. F., deLange, T., Flavell, R. A., and Grosveld, F.. 1983. β-Globin inactivation by DNA translocation in γβ-thalassemia. Nature 306:662–664
  • Kozak, M.. 1987. An analysis of 5′-non-coding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15:8125–8145
  • Kozak, M.. 1990. Downstream secondary structure facilitates recognition of initiation codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87:8301–8305
  • Lemaire, P., Vesque, C., Schmitt, H., Stunnenberg, H., Frank, R., and Charnay, P.. 1990. The serum-inducible mouse gene Krox-24 encodes a sequence-specific transcriptional activator. Mol. Cell. Biol. 10:3456–3467
  • Lim, L. C., Swendeman, S. L., and Sheffery, M.. 1992. Molecular cloning of the α-globin transcription factor CP2. Mol. Cell. Biol. 12:828–835
  • Lock, P., Ralph, S., Stanley, E., Boulet, I., Ramsay, R., and Dunn, A. R.. 1991. Two isoforms of murine hck generated by utilization of alternative translational initiation codons exhibit different patterns of subcellular localization. Mol. Cell. Biol. 11:4363–4370
  • Lozzio, C. B., and Lozzio, B. B.. 1975. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334
  • Mehdi, H., Ono, E., and Gupta, K. C.. 1990. Initiation of translation at CUG, GUG, and ACG codons in mammalian cells. Gene 91:173–178
  • Mellentin, J. D., Smith, S. D., and Cleary, M. L.. 1989. Lyl-1, a novel gene altered by chromosomal translocation in T-cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58:77–83
  • Moritz, T., Dutt, P., Xiao, X., Carstanjen, D., Vik, T., Hanenberg, H., and Williams, D. A.. 1996. Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood 88:855–862
  • Morley, B. J., Abbott, C. A., and Wood, W. G.. 1991. Regulation of human fetal and adult globin genes in mouse erythroleukemia cells. Blood 78:1355–1363
  • Nagpal, S., Zelent, A., and Chambon, P.. 1992. RAR-beta 4, a retinoic acid receptor isoform is generated from RAR-beta 2 by alternative splicing and usage of a CUG initiator codon. Proc. Natl. Acad. Sci. USA 89:2718–2722
  • Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., and Grosveld, F.. 1995. Defective hematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375:316–318
  • Orkin, S. H.. 1995. Regulation of globin gene expression in erythroid cells. Eur. J. Biochem. 231:271–281
  • Packham, G., Brimmell, M., and Cleveland, J. L.. 1997. Mammalian cells express two differently localised Bag-1 isoforms generated by alternative translation initiation. Biochem. J. 328:807–813
  • Paszty, C., Brion, C. M., Manci, E., Witkowska, H. E., Stevens, M. E., Mohandas, N., and Rubin, E. M.. 1997. Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science 278:876–878
  • Peabody, D. S.. 1989. Translation initiation at non-AUG triplets in mammalian cells. J. Biol. Chem. 264:5031–5035
  • Perkins, A. C., Gaensler, K. M. L., and Orkin, S. H.. 1996. Silencing of human fetal globin expression is impaired in the absence of the adult β-globin gene activator protein, EKLF. Proc. Natl. Acad. Sci. USA 93:12267–12271
  • Perkins, A. C., Sharpe, A. H., and Orkin, S. H.. 1995. Lethal β-thalassemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375:318–322
  • Poncz, M. P., Henthorn, P., Stoekert, C., and Surrey, S.. 1989. Globin gene expression in hereditary persistence of fetal hemoglobin and δβ0-thalassemia Oxford surveys of eukaryotic genes. McLean, N. 163–203 Oxford University Press, Oxford, United Kingdom
  • Prats, H., Kaghad, M., Prats, A. C., Klagsburn, M., Lelias, J. M., Liauzun, P., Chalon, P., Tauber, J. P., Amalric, F., Smith, J. A., and Caput, D.. 1989. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc. Natl. Acad. Sci. USA 86:1836–1840
  • Rowley, P. T., Ohlsson-Wilhelm, B. M., Wisniewski, L., Lozzio, C. B., and Lozzio, B. B.. 1984. K562 human leukemia cell passages differ in embryonic globin gene expression. Leuk. Res. 8:45–54
  • Ryan, T. M., Ciavatta, D. J., and Townes, T. M.. 1997. Knockout-transgenic mouse model of sickle cell disease. Science 278:873–876
  • Sabatino, D. E., Cline, A. P., Gallagher, P. G., Garrett, L. J., Stamatoyannopoulos, G., Forget, B. G., and Bodine, D. M.. 1998. Substitution of the human β-spectrin promoter for the human Aγ-globin promoter prevents silencing of a linked human β-globin gene in transgenic mice. Mol. Cell. Biol. 18:6634–6640
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Saris, C. J. M., Domen, J., and Berns, A.. 1989. 1991. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 10:655–664
  • Shirra, M. K., Zhu, Q., Huang, H.-C., Pallas, D., and Hansen, U.. 1994. One exon of the human LSF gene includes conserved regions involved in novel DNA-binding and dimerization motifs. Mol. Cell. Biol. 14:5076–5087
  • Stamatoyannopoulos, G., and Nienhuis, A. W.. Hemoglobin switching The molecular basis of blood diseases, 2nd ed. Stamatoyannopoulos, G., Nienhuis, A. W., Majerus, P. J., and Varmus, H. 1994. 107–156 W. B. Saunders, Philadelphia, Pa
  • Starck, J., Sarkar, R., Romana, M., Bhargava, A., Scarpa, A. L., Tanaka, M., Chamberlain, J. W., Weissman, S. M., and Forget, B. G.. 1994. Developmental regulation of human γ- and β-globin genes in the absence of the locus control region. Blood 84:1656–1665
  • Sui, X., Krantz, S. B., You, M., and Zhao, Z.. 1998. Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood 92:1142–1149
  • Tagle, D. A., Koop, B. F., Goodman, M., Slightom, J. L., Hess, D. L., and Jones, R. T.. 1988. Embryonic ɛ and γ globin genes of a prosimian primate (Galago crassicaudatus). J. Mol. Biol. 203:439–455
  • Taramelli, R., Kioussis, D., Vanin, E. F., Bartram, K., Groffen, J., Hurst, J., and Grosveld, F. G.. 1986. γδβ-Thalassemias 1 and 2 are the result of a 100 kbp deletion in the human β-globin cluster. Nucleic Acids Res. 14:7017–7029
  • Tuan, D., Solomon, W., Li, Q., and London, I. M.. 1985. The “β-like-globin” gene domain in human erythroid cells. Proc. Natl. Acad. Sci. USA 82:6384–6388
  • Uv, A. E., Thompson, C. R. L., and Bray, S. J.. 1994. The Drosophila tissue-specific factor grainyhead contains novel DNA-binding and dimerization domains that are conserved in the human protein CP2. Mol. Cell. Biol. 14:4020–4031
  • van der Ploeg, L. H., Konings, A., Oort, M., Roos, D., Bernini, L., and Flavell, R. A.. 1980. γβ-Thalassemia studies showing that deletion of the γ and δ genes influences β-globin expression in man. Nature 283:637–642
  • Vanin, E. F., Henthorn, P. S., Kioussis, D., Grosveld, F., and Smithies, O.. 1983. Unexpected relationships between four large deletions in the human β-globin gene cluster. Cell 35:701–709
  • Wijgerde, M., Gribnau, J., Trimborn, T., Nuez, B., Philipsen, S., Grosveld, F., and Fraser, P.. 1996. The role of EKLF in human β-globin gene competition. Genes Dev. 10:2894–2902
  • Wijgerde, M., Grosveld, F., and Fraser, P.. 1995. Transcription complex stability and chromatin dynamics in vivo. Nature 377:209–213
  • Xiao, J. H., Davidson, I., Matthes, H., Garnier, J., and Chambon, P.. 1991. Cloning, expression and transcriptional properties of the human enhancer factor TEF-1. Cell 65:551–568
  • Yang, Z., and Engel, J. D.. 1994. Biochemical characterisation of the developmental stage- and tissue-specific erythroid transcription factor, NF-E4. J. Biol. Chem. 269:10079–10087
  • Yoon, J.-B., Li, G., and Roeder, R. G.. 1994. Characterization of a family of related cellular transcription factors which can modulate human immunodeficiency virus type 1 transcription in vitro. Mol. Cell. Biol. 14:1776–1785

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.