9
Views
54
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Nicking Step in V(D)J Recombination Is Independent of Synapsis: Implications for the Immune Repertoire

&
Pages 7914-7921 | Received 12 Apr 2000, Accepted 09 Aug 2000, Published online: 28 Mar 2023

REFERENCES

  • Agrawal, A., Eastman, Q. M., and Schatz, D. G.. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751
  • Aldaz, H., Schuster, E., and Baker, T.. 1996. The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis. Cell 85:257–269
  • Arciszewska, L. K., Drake, D., and Craig, N. L.. 1989. Transposon Tn7. cis-acting sequences in transposition and transposition immunity. J. Mol. Biol. 207:35–52
  • Bailin, T., Mo, X., and Sadofsky, M. J.. 1999. A RAG1 and RAG2 tetramer complex is active in cleavage in V(D)J recombination. Mol. Cell. Biol. 19:4664–4671
  • Besmer, E., Mansilla-Soto, J., Cassard, S., Sawchuk, D. J., Brown, G., Sadofsky, M., Lewis, S. M., Nussenzweig, M. C., and Cortes, P.. 1998. Hairpin coding end opening is mediated by the recombination activating genes RAG1 and RAG2. Mol. Cell 2:817–828
  • Cedar, H., and Bergman, Y.. 1999. Developmental regulation of immune system gene rearrangement. Curr. Opin. Immunol. 11:64–69
  • Cornish-Bowden, A.. 1979. Fundamentals of enzyme kinetics. Butterworths, London, England
  • Eastman, Q. M., Leu, T. M. J., and Schatz, D. G.. 1996. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380:85–88
  • Eastman, Q. M., and Schatz, D. G.. 1997. Nicking is asynchronous and stimulated by synapsis in 12/23 rule-regulated V(D)J cleavage. Nucleic Acids Res. 25:4370–4378
  • Eastman, Q. M., Villey, I. J., and Schatz, D. G.. 1999. Detection of RAG protein-V(D)J recombination signal interactions near the site of DNA cleavage by UV cross-linking. Mol. Cell. Biol. 19:3788–3797
  • Forrester, W. C., Genderen, C. V., Jenuwein, T., and Grosschedl, R.. 1994. Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science 265:1221–1225
  • Gellert, M.. 1997. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64:39–64
  • Gerstein, R. M., and Lieber, M. R.. 1993. Coding end sequence can markedly affect the initiation of V(D)J recombination. Genes Dev. 7:1459–1469
  • Grawunder, U., and Lieber, M. R.. 1997. A complex of RAG-1 and RAG-2 persists on the DNA after single-strand cleavage at V(D)J recombination signal sequences. Nucleic Acids Res. 25:1375–1382
  • Haniford, D. B., Benjamin, H. W., and Kleckner, N.. 1991. Kinetic and structural analysis of a cleaved donor intermediate and a strand transfer intermediate in Tn10 transposition. Cell 64:171–179
  • Hempel, W. M., Leduc, I., Mathieu, N., Tripathi, R., and Ferrier, P.. 1998. Accessibility control of V(D)J recombination: lessons from gene targeting. Adv. Immunol. 69:309–352
  • Hensley, P., Nardone, G., Chirikjian, J., and Watsney, M. E.. 1990. The time-resolved kinetics of superhelical DNA cleavage by BamHI restriction endonuclease. J. Biol. Chem. 265:15300–15307
  • Hesse, J. E., Lieber, M. R., Mizuuchi, K., and Gellert, M.. 1989. V(D)J recombination: a functional definition of the joining signals. Genes Dev. 3:1053–1067
  • Hiom, K., and Gellert, M.. 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1:1011–1019
  • Hiom, K., and Gellert, M.. 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88:65–72
  • Hiom, K., Melek, M., and Gellert, M.. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470
  • Jenuwein, T., Forrester, W., Qiu, R.-G., and Grosschedl, R.. 1993. The immunoglobulin mu enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. Genes Dev. 7:2016–2032
  • Jenuwein, T., Forrester, W., Fernandez-Herrero, L., Laible, G., Dull, M., and Grosschedl, R.. 1997. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385:269–272
  • Kennedy, A. K., Guhathakurta, A., Kleckner, N., and Haniford, D. B.. 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95:125–134
  • Kim, D. R., and Oettinger, M. A.. 1998. Functional analysis of coordinated cleavage in V(D)J recombination. Mol. Cell. Biol. 18:4679–4688
  • Lieber, M. R.. 1998. Pathologic and physiologic double-strand breaks: roles in cancer, aging, and the immune system. Am. J. Pathol. 153:1323–1332
  • Lieber, M. R.. 1991. Site-specific recombination in the immune system. FASEB J. 5:2934–2944
  • Lindahl, T., and Barnes, D. E.. 1992. Mammalian DNA ligases. Annu. Rev. Biochem. 61:251–281
  • Lykke-Andersen, J., Thi-Ngoc, H. P., and Garrett, R. A.. 1994. DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum. Nucleic Acids. Res. 22:4583–4590
  • McBlane, J. F., Gent, D. C., Ramsden, D. A., Romeo, C., Cuomo, C. A., Gellert, M., and Oettinger, M. A.. 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395
  • Mizuuchi, K.. 1992. Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61:1011–1051
  • Mostoslavsky, R., Singh, N., Kirillov, A., Pelanda, R., Cedar, H., Chess, A., and Bergman, Y.. 1998. k chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12:1801–1811
  • Murphy, J., and Goff, S.. 1992. A mutation at one end of Moloney murine leukemia virus DNA blocks cleavage of both ends by the viral integrase in vivo. J. Virol. 66:5092–5095
  • Oettinger, M. A., Schatz, D. G., Gorka, C., and Baltimore, D.. 1990. Rag-1 and Rag-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523
  • Plasterk, R.. 1998. Ragtime jumping. Nature 394:718–719
  • Roman, L. J., and Kowalczykowski, S. C.. 1989. Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay. Biochemistry 28:2863–2873
  • Roth, D. B., and Craig, N. L.. 1998. VDJ recombination: a transposase goes to work. Cell 94:411–414
  • Sakai, J., and Kleckner, N.. 1995. Identification and characterization of a pre-cleavage synaptic complex that is an early intermediate in Tn10 transposition. EMBO J. 14:4374–4383
  • Sawchuk, D., Weis-Garcia, F., Malik, S., Besmer, E., Bustin, M., Nussenzweig, M., and Cortes, P.. 1997. V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins. J. Exp. Med. 185:2025–2032
  • Schatz, D. G., Oettinger, M. A., and Baltimore, D.. 1989. The V(D)J recombination activating gene, RAG-1. Cell 59:1035–1048
  • Segall, A. M.. 1998. Analysis of higher order intermediates and synapsis in the bent-L pathway of bacteriophage site-specific recombination. J. Biol. Chem. 273:24258–24265
  • Sheehan, K. M., and Lieber, M. R.. 1993. V(D)J recombination: signal and coding joint resolution are uncoupled and depend on parallel synapsis of the sites. Mol. Cell. Biol. 13:1363–1370
  • Sleckman, B. P., Gorman, J., and Alt, F. W.. 1996. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu. Rev. Immunol. 14:459–481
  • Swanson, P. C., and Desiderio, S.. 1999. RAG-2 promotes heptamer occupancy by RAG-1 in the assembly of a V(D)J initiation complex. Mol. Cell. Biol. 19:3674–3683
  • Tonegawa, S.. 1983. Somatic generation of antibody diversity. Nature 302:575–581
  • van Gent, D., Hoim, K., Paull, T., and Gellert, M.. 1997. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J. 16:2665–2670
  • van Gent, D. C., Ramsden, D. A., and Gellert, M.. 1996. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85:107–113
  • Wei, S. Q., Mizuuchi, K., and Craigie, R.. 1997. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16:7511–7520
  • Weis-Garcia, F., Besmer, E., Sawchuk, D. J., Yu, W., Hu, Y., Cassard, S., Nussenzweig, M., and Cortes, P.. 1997. V(D)J recombination: in vitro coding joint formation. Mol. Cell. Biol. 17:6379–6385
  • Wenz, C., Hahn, M., and Pingoud, A.. 1998. Engineering of variants of the restriction endonuclease EcoRV that depend in their cleavage activity on the flexibility of sequences flanking the recognition site. Biochemistry 37:2234–2242
  • West, R. B., and Lieber, M. R.. 1998. The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step. Mol. Cell. Biol. 18:6408–6415
  • Wright, D. J., Jack, W. E., and Modrich, P.. 1999. The kinetic mechanism of EcoRI endonuclease. J. Biol. Chem. 274:31896–31902
  • Yu, K., and Lieber, M. R.. 1999. Mechanistic basis for coding end sequence effects in the initiation of V(D)J recombination. Mol. Cell. Biol. 19:8094–8102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.