16
Views
80
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Cdc13 Cooperates with the Yeast Ku Proteins and Stn1 To Regulate Telomerase Recruitment

, &
Pages 8397-8408 | Received 18 May 2000, Accepted 22 Aug 2000, Published online: 28 Mar 2023

REFERENCES

  • Ausubel, F. A., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. 1998. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y
  • Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichsteiner, S., and Wright, W. E.. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352
  • Boulton, S. J., and Jackson, S. P.. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24:4639–4648
  • Boulton, S. J., and Jackson, S. P.. 1998. Components of the Ku-dependent nonhomologous end-joining pathways are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:1819–1828
  • Bourns, B. D., Alexander, M. K., Smith, A. M., and Zakian, V. A.. 1998. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18:5600–5608
  • Brun, C., Marcand, S., and Gilson, E.. 1997. Proteins that bind to double-stranded regions of telomeric DNA. Trends Cell Biol. 7:317–324
  • Critchlow, S. E., and Jackson, S. P.. 1998. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23:394–398
  • Cooke, H. J., and Smith, B. A.. 1986. Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harbor Symp. Quant. Biol. 51:213–219
  • Diede, S. J., and Gottschling, D. E.. 1999. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ. Cell 99:723–733
  • Evans, S. K., and Lundblad, V.. 1999. Est1 and Cdc13 as comediators of telomerase access. Science 286:117–120
  • Feldmann, H., and Winnacker, E.-L.. 1993. A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem. 268:12895–12900
  • Feldmann, H., Driller, L., Meier, B., Mages, G., Kellermann, J., and Winnacker, E.-L.. 1996. HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J. Biol. Chem. 271:27765–27769
  • Fellerhoff, B., Eckardt-Schupp, F., and Friedl, A. A.. 2000. Subtelomeric repeat amplification is associated with growth at elevated temperature in yku70 mutants of Saccharomyces cerevisiae. Genetics 154:1039–1051
  • Garvik, B., Carson, M., and Hartwell, L.. 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15:6128–6138
  • Gietz, R. D., and Sugino, A.. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534
  • Grandin, N., de Almeida, A., and Charbonneau, M.. 1998. The Cdc14 phosphatase interacts with Dbf2 kinase activity during exit from mitosis in Saccharomyces cerevisiae. Mol. Gen. Genet. 258:104–116
  • Grandin, N., Reed, S. I., and Charbonneau, M.. 1997. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11:512–527
  • Gravel, S., Larrivée, M., Labrecque, P., and Wellinger, R. J.. 1998. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280:741–744
  • Greenwell, P. W., Kronmal, S. L., Porter, S. E., Gassenhuber, J., Obermaier, B., and Petes, T. D.. 1995. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82:823–829
  • Grunstein, M.. 1997. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol. 9:383–387
  • Haber, J. E.. 1998. The many interfaces of Mre11. Cell 95:583–586
  • Haber, J. E.. 1999. Sir-Ku-itous routes to make ends meet. Cell 97:829–832
  • Hardy, C. F. J., Sussel, L., and Shore, D.. 1992. A RAP1-interacting protein involved in silencing and telomere length regulation. Genes Dev. 6:801–814
  • Hsu, H.-L., Gilley, D., Blackburn, E. H., and Chen, D. J.. 1999. Ku is associated with the telomere in mammals. Proc. Natl. Acad. Sci. USA 96:12454–12458
  • Hughes, T. R., Evans, S. K., Weilbaecher, R. G., and Lundblad, V.. 2000. The Est3 protein is a subunit of yeast telomerase. Curr. Biol. 10:809–812
  • Hughes, T. R., Weilbaecher, R. G., Walterscheid, M., and Lundblad, V.. 2000. Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc. Natl. Acad. Sci. USA 97:6457–6462
  • Jackson, S. P.. 1997. Genomic stability: silencing and DNA repair connect. Nature 388:829–830
  • Kironmai, K. M., and Muniyappa, K.. 1997. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2:443–455
  • Lendvay, T. S., Morris, D. K., Sah, J., Balasubramanian, B., and Lundblad, V.. 1996. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144:1399–1412
  • Lin, J.-J., and Zakian, V. A.. 1996. The Saccharomyces CDC13 protein is a single-strand TG1–3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 93:13760–13765
  • Lingner, J., and Cech, T. R.. 1998. Telomerase and chromosome end maintenance. Curr. Opin. Genet. Dev. 8:226–232
  • Lingner, J., Cech, T. R., Hughes, T. R., and Lundblad, V.. 1997. Three ever shorter telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 94:11190–11195
  • Lundblad, V., and Blackburn, E. H.. 1993. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73:347–360
  • Lundblad, V., and Szostak, J. W.. 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:633–643
  • Lustig, A. J., and Petes, T. D.. 1986. Identification of yeast mutants with altered telomere structure. Proc. Natl. Acad. Sci. USA 83:1398–1402
  • Marcand, S., Gilson, E., and Shore, D.. 1997. A protein-counting mechanism for telomere length regulation in yeast. Science 275:986–990
  • Martin, S. G., Laroche, T., Suka, N., Grunstein, M., and Gasser, S. M.. 1999. Relocalization of telomeric Ku and Sir proteins in response to DNA strand breaks in yeast. Cell 97:621–633
  • McEachern, M. J., and Blackburn, E. H.. 1995. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376:403–409
  • Milne, G. T., Jin, S., Shannon, K. B., and Weaver, D. T.. 1996. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4189–4198
  • Mishra, K., and Shore, D.. 1999. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by Rif proteins. Curr. Biol. 9:1123–1126
  • Moore, J. K., and Haber, J. E.. 1996. Cell cycle and genetic requirement of two pathways of nonhomologous end-joining repair of double-strand breaks in S. cerevisiae. Mol. Cell. Biol. 16:2164–2173
  • Nakamura, T. M., and Cech, T. R.. 1998. Reversing time: origin of telomerase. Cell 92:587–590
  • Nugent, C. I., and Lundblad, V.. 1998. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12:1073–1085
  • Nugent, C. I., Bosco, G., Ross, L. O., Evans, S. K., Salinger, A. P., Moore, J. K., Haber, J. E., and Lundblad, V.. 1998. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8:657–660
  • Nugent, C. I., Hughes, T. R., Lue, N. F., and Lundblad, V.. 1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249–252
  • Polotnianka, R. M., Li, J., and Lustig, A. J.. 1998. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8:831–834
  • Porter, S. E., Greenwell, P. W., Ritchie, K. B., and Petes, T. D.. 1996. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24:582–585
  • Qi, H., and Zakian, V. A.. 2000. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev. 14:1777–1788
  • Ray, A., and Runge, K. W.. 1999. Varying the number of telomere-bound proteins does not alter telomere length in tel1Δ cell. Proc. Natl. Acad. Sci. USA 96:15044–15049
  • Sandell, L. L., and Zakian, V. A.. 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729–739
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Singer, M. S., and Gottschling, D. E.. 1994. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266:404–409
  • Teng, S.-C., and Zakian, V. A.. 1999. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:8083–8093
  • Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P. et al. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627
  • Virta-Pearlman, V., Morris, D. K., and Lundblad, V.. 1996. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10:3094–3104
  • Weaver, D. T.. 1998. Telomeres: moonlighting by DNA repair proteins. Curr. Biol. 8:492–494
  • Wellinger, R. J., Wolf, A. J., and Zakian, V. A.. 1993. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72:51–60
  • Wellinger, R. J., Ethier, K., Labrecque, P., and Zakian, V. A.. 1996. Evidence for a new step in telomere maintenance. Cell 85:423–433
  • Wotton, D., and Shore, D.. 1997. A novel Rap1-interacting factor, Rif2p, cooperates with Rif1 to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11:748–760
  • Zakian, V. A.. 1996. Structure, function, and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet. 30:141–172
  • Zhou, J., Hidaka, K., and Futcher, B.. 2000. The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol. Cell. Biol. 20:1947–1955

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.