73
Views
270
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Multiple C-Terminal Lysine Residues Target p53 for Ubiquitin-Proteasome-Mediated Degradation

, , , &
Pages 8458-8467 | Received 13 Apr 2000, Accepted 14 Aug 2000, Published online: 28 Mar 2023

REFERENCES

  • Askjaer, P., Jensen, T. H., Nilsson, J., Englmeier, L., and Kjems, J.. 1998. The specificity of the CRM1-Rev nuclear export signal interaction is mediated by RanGTP. J. Biol. Chem. 273:33414–33422
  • Baldi, L., Brown, K., Franzoso, G., and Siebenlist, U.. 1996. Critical role for lysine-21 and lysine-22 signal-induced, ubiquitin-mediated proteolysis of IκBα. J. Biol. Chem. 271:376–379
  • Barak, Y., Juven, T., Haffner, R., and Oren, M.. 1993. mdm2 expression is induced by wild type p53 activity. EMBO J. 12:461–468
  • Bottger, V., Bottger, A., Howard, S. F., Picksley, S. M., Chene, P., Garcia-Echeverria, C., Hochkeppel, H. K., and Lane, D. P.. 1996. Identification of novel mdm2 binding peptides by phage display. Oncogene 13:2141–2147
  • Chen, J., Marechal, V., and Levine, A. J.. 1993. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13:4107–4114
  • Crook, T., Ludwig, R. L., Marston, N. J., Willkomm, D., and Vousden, K. H.. 1996. Sensitivity of p53 lysine mutants to ubiquitin-directed degradation targeted by human papillomavirus E6. Virology 217:285–292
  • Dang, C. V., and Lee, W. M.. 1989. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J. Biol. Chem. 264:18019–18023
  • Desterro, J. M. P., Rodriguez, M. S., and Hay, R. T.. 1998. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2:233–239
  • Eizenberg, O., Faber-Elman, A., Gottlieb, E., Oren, M., Rotter, V., and Schwartz, M.. 1995. Direct involvement of p53 in programmed cell death of oligodendrocytes. EMBO J. 14:1136–1144
  • el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B.. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825
  • Fornerod, M., Ohno, M., Yoshida, M., and Mattaj, I. W.. 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060
  • Freedman, D. A., and Levine, A. J.. 1998. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18:7288–7293
  • Fuchs, S. Y., Adler, V., Buschmann, T., Wu, X., and Ronai, Z.. 1998. Mdm2 association with p53 targets its ubiquitination. Oncogene 17:2543–2547
  • Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S. E., Scheffner, M., and Del Sal, G.. 1999. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18:6462–6471
  • Gu, J., Chen, D., Rosenblum, J., Rubin, R. M., and Yuan, Z.-M.. 2000. Identification of a sequence element from p53 that signals for Mdm2-targeted degradation. Mol. Cell. Biol. 20:1243–1253
  • Gu, W., and Roeder, R. T.. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606
  • Herrmann, C. P., Kraiss, S., and Montenarh, M.. 1991. Association of casein kinase II with immunopurified p53. Oncogene 6:877–884
  • Hershko, A., and Ciechanover, A.. 1992. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61:761–807
  • Honda, R., Tanaka, H., and Yasuda, H.. 1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420:25–27
  • Honda, R., and Yasuda, H.. 1999. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18:22–27
  • Hsieh, J. K., Chan, F. S., O'Connor, D. J., Mittnacht, S., Zhong, S., and Lu, X.. 1999. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol. Cell 3:181–193
  • Hupp, T. R., and Lane, D. P.. 1994. Allosteric activation of latent p53 tetramers. Curr. Biol. 4:865–875
  • Hupp, T. R., Meek, D. W., Midgley, C. A., and Lane, D. P.. 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886
  • Jones, S. N., Roe, A. E., Donehower, L. A., and Bradley, A.. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208
  • Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W.. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304–6311
  • Ko, L. J., and Prives, C.. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072
  • Kroll, M., Conconi, M., Desterro, M. J., Marin, A., Thomas, D., Friguet, B., Hay, R. T., Virelizier, J. L., Arenzana-Seisdedos, F., and Rodriguez, M. S.. 1997. The carboxy-terminus of IκBα determines susceptibility to degradation by the catalytic core of the proteasome. Oncogene 15:1841–1850
  • Kubbutat, M. H. G., Ludwig, R. L., Ashcroft, M., and Vousden, K. H.. 1998. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol. Cell. Biol. 18:5690–5698
  • Lain, S., Midgley, C., Sparks, A., Lane, E. B., and Lane, D. P.. 1999. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. Exp. Cell Res. 248:457–472
  • Lane, D. P.. 1998. Awakening angels. Nature 394:616–617
  • Lane, D. P.. 1992. Cancer. p53, guardian of the genome. Nature 358:15–16
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331
  • Liang, S. H., Hong, D., and Clarke, M. F.. 1998. Cooperation of a single lysine mutation and a C-terminal domain in the cytoplasmic sequestration of the p53 protein. J. Biol. Chem. 273:19817–19821
  • Maki, C. G., Huibregtse, J. M., and Howley, P. M.. 1996. In-vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 56:2649–2654
  • Maltzman, W., and Czyzyk, L.. 1984. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 4:1689–1694
  • Mansur, C. P., Marcus, B., Dalal, S., and Androphy, E. J.. 1995. The domain of p53 required for binding HPV 16 E6 is separable from the degradation domain. Oncogene 10:457–465
  • Mayo, L. D., Turchi, J. J., and Berberich, S. J.. 1997. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res. 57:5013–5016
  • Meek, D. W., Simon, S., Kikkawa, U., and Eckhart, W.. 1990. The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 9:3253–3260
  • Midgley, C. A., Desterro, J. M., Saville, M. K., Howard, S., Sparks, A., Hay, R. T., and Lane, D. P.. 2000. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19:2312–2323
  • Midgley, C. A., Fisher, C. J., Bartek, J., Vojtesek, B., Lane, D., and Barnes, D. M.. 1992. Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. J. Cell Sci. 101:183–189
  • Midgley, C. A., and Lane, D. P.. 1997. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15:1179–1189
  • Miyashita, T., and Reed, J. C.. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299
  • Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J.. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245
  • Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L., and Vogelstein, B.. 1992. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83
  • Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B.. 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857–860
  • Ossareh-Nazari, B., Bachelerie, F., and Dargemont, C.. 1997. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278:141–144
  • Pavletich, N. P., Chambers, K. A., and Pabo, C. O.. 1993. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 7:2556–2564
  • Rechsteiner, M., and Rogers, S. W.. 1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21:267–271
  • Rodriguez, M. S., Desterro, J. M., Lain, S., Midgley, C. A., Lane, D. P., and Hay, R. T.. 1999. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18:6455–6461
  • Rodriguez, M. S., Michalopoulos, I., Arenzana-Seisdedos, F., and Hay, R. T.. 1995. Inducible degradation of IκBα in vitro and in vivo requires the acidic C-terminal domain of the protein. Mol. Cell. Biol. 15:2413–2419
  • Rodriguez, M. S., Wright, J., Thompson, J., Thomas, D., Baleux, F., Virelizier, J. L., Hay, R. T., and Arenzana-Seisdedos, F.. 1996. Identification of lysine residues required for signal-induced ubiquitination and degradation of IκBα in vivo. Oncogene 12:2425–2435
  • Rogers, S., Wells, R., and Rechsteiner, M.. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368
  • Rolfe, M., Beerromero, P., Glass, S., Eckstein, J., Berdo, I., Theodoras, A., Pagano, M., and Draetta, G.. 1995. Reconstitution of p53-ubiquitinylation reactions from purified components—the role of human ubiquitin-conjugating enzyme Ubc4 and E6-associated protein (E6AP). Proc. Natl. Acad. Sci. USA 92:3264–3268
  • Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T., and Levine, A. J.. 1998. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17:554–564
  • Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E.. 1998. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841
  • Scherer, D. C., Brockman, J. A., Chen, Z., Maniatis, T., and Ballard, D. W.. 1995. Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263
  • Shaulsky, G., Goldfinger, N., Ben-Ze'ev, A., and Rotter, V.. 1990. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell. Biol. 10:6565–6577
  • Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C.. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334
  • Sionov, R. V., Moallem, E., Berger, M., Kazaz, A., Gerlitz, O., Ben-Neriah, Y., Oren, M., and Haupt, Y.. 1999. c-Abl neutralizes the inhibitory effect of Mdm2 on p53. J. Biol. Chem. 274:8371–8374
  • Stommel, J. M., Marchenko, N. D., Jimenez, G. S., Moll, U. M., Hope, T. J., and Wahl, G. M.. 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18:1660–1672
  • Treier, M., Staszewski, L. M., and Bohmann, D.. 1994. Ubiquitin-dependent c-jun degradation in-vivo is mediated by the delta-domain. Cell 78:787–798
  • Ullman, K. S., Powers, M. A., and Forbes, D. J.. 1997. Nuclear export receptors: from importin to exportin. Cell 90:967–970
  • Vojtesek, B., Dolezalova, H., Lauerova, L., Svitakova, M., Havlis, P., Kovarik, J., Midgley, C. A., and Lane, D. P.. 1995. Conformational changes in p53 analysed using new antibodies to the core DNA binding domain of the protein. Oncogene 10:389–393
  • Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J., and Bar-Sagi, D.. 1999. Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol. 1:20–26
  • Wu, X., Bayle, J. H., Olson, D., and Levine, A. J.. 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132
  • Zhang, Y., and Xiong, Y.. 1999. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3:579–591

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.