8
Views
188
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

8-Bromo-Cyclic AMP Induces Phosphorylation of Two Sites in SRC-1 That Facilitate Ligand-Independent Activation of the Chicken Progesterone Receptor and Are Critical for Functional Cooperation between SRC-1 and CREB Binding Protein

, , &
Pages 8720-8730 | Received 21 Jul 2000, Accepted 19 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Abreu-Martin, M. T., Chari, A., Palladino, A. A., Craft, N. A., and Sawyers, C. L.. 1999. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol. Cell. Biol. 19:5143–5154
  • Ait, S. A., Carlisi, D., Ramirez, S., Upegui-Gonzalez, L. C., Duquet, A., Robin, P., Rudkin, B., Harel-Bellan, A., and Trouche, D.. 1999. Phosphorylation by p44 MAP kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro. Biochem. Biophys. Res. Commun. 262:157–162
  • Ait, S. A., Ramirez, S., Barre, F. X., Dkhissi, F., Magnaghi-Jaulin, L., Girault, J. A., Robin, P., Knibiehler, M., Pritchard, L. L., Ducommun, B., Trouche, D., and Harel-Bellan, A.. 1998. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396:184–186
  • Allgood, V. E., Zhang, Y., O'Malley, B. W., and Weigel, N. L.. 1997. Analysis of chicken progesterone receptor function and phosphorylation using an adenovirus-mediated procedure for high-efficiency DNA transfer. Biochemistry 36:224–232
  • Alnemri, E. S., Maksymowych, A. B., Robertson, N. M., and Litwack, G.. 1991. Characterization and purification of a functional rat glucocorticoid receptor overexpressed in a baculovirus system. J. Biol. Chem. 266:3925–3936
  • Ambrosini, A., Tininini, S., Barassi, A., Racagni, G., Sturani, E., and Zippel, R.. 2000. cAMP cascade leads to Ras activation in cortical neurons. Brain Res. Mol. Brain Res. 75:54–60
  • Arnold, S. F., Obourn, J. D., Jaffe, H., and Notides, A. C.. 1995. Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol. Endocrinol. 9:24–33
  • Aronica, S. M., and Katzenellenbogen, B. S.. 1993. Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol. Endocrinol. 7:743–752
  • Bai, W., Rowan, B. G., Allgood, V. E., O'Malley, B. W., and Weigel, N. L.. 1997. Differential phosphorylation of chicken progesterone receptor in hormone-dependent and ligand-independent activation. J. Biol. Chem. 272:10457–10463
  • Bai, W., Tullos, S., and Weigel, N. L.. 1994. Phosphorylation of Ser530 facilitates hormone-dependent transcriptional activation of the chicken progesterone receptor. Mol. Endocrinol. 8:1465–1473
  • Bai, W., and Weigel, N. L.. 1996. Phosphorylation of Ser211 in the chicken progesterone receptor modulates its transcriptional activity. J. Biol. Chem. 271:12801–12806
  • Barge, R. M., Falkenburg, J. H., Willemze, R., and Maassen, J. A.. 1997. 8-Bromo-cAMP induces a proliferative response in an IL-3 dependent leukemic cell line and activates Erk 1,2 via a Shc-independent pathway. Biochim. Biophys. Acta 1355:141–146
  • Beck, C. A., Weigel, N. L., and Edwards, D. P.. 1992. Effects of hormone and cellular modulators of protein phosphorylation on transcriptional activity, DNA binding, and phosphorylation of human progesterone receptors. Mol. Endocrinol. 6:607–620
  • Boonyaratanakornkit, V., Melvin, V., Prendergast, P., Altmann, M., Ronfani, L., Bianchi, M. E., Taraseviciene, L., Nordeen, S. K., Allegretto, E. A., and Edwards, D. P.. 1998. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 18:4471–4487
  • Bunone, G., Briand, P. A., Miksicek, R. J., and Picard, D.. 1996. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15:2174–2183
  • Castoria, G., Migliaccio, A., Green, S., Di Domenico, M., Chambon, P., and Auricchio, F.. 1993. Properties of a purified estradiol-dependent calf uterus tyrosine kinase. Biochemistry 32:1740–1750
  • Chawla, S., Hardingham, G. E., Quinn, D. R., and Bading, H.. 1998. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281:1505–1509
  • Cook, S. J., and McCormick, F.. 1993. Inhibition by cAMP of Ras-dependent activation of Raf. Science 262:1069–1072
  • Culig, Z., Hobisch, A., Hittmair, A., Cronauer, M. V., Radmayr, C., Zhang, J., Bartsch, G., and Klocker, H.. 1997. Synergistic activation of androgen receptor by androgen and luteinizing hormone-releasing hormone in prostatic carcinoma cells. Prostate 32:106–114
  • Dayani, N., McNaught, R. W., Shenolikar, S., and Smith, R. G.. 1990. Receptor interconversion model of hormone action. 2. Requirement of both kinase and phosphatase activities for conferring estrogen binding activity to the estrogen receptor. Biochemistry 29:2691–2698
  • Denner, L. A., Schrader, W. T., O'Malley, B. W., and Weigel, N. L.. 1990. Hormonal regulation and identification of chicken progesterone receptor phosphorylation sites. J. Biol. Chem. 265:16548–16555
  • Denner, L. A., Weigel, N. L., Maxwell, B. L., Schrader, W. T., and O'Malley, B. W.. 1990. Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 250:1740–1743
  • Denton, R. R., Koszewski, N. J., and Notides, A. C.. 1992. Estrogen receptor phosphorylation. Hormonal dependence and consequence on specific DNA binding. J. Biol. Chem. 267:7263–7268
  • Font de Mora, J., and Brown, M.. 2000. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol. Cell. Biol. 20:5041–5047
  • Gao, Z., Chen, T., Weber, M. J., and Linden, J.. 1999. A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. Cross-talk between cyclic AMP and protein kinase C pathways. J. Biol. Chem. 274:5972–5980
  • Han, X. B., and Conn, P. M.. 1999. The role of protein kinases A and C pathways in the regulation of mitogen-activated protein kinase activation in response to gonadotropin-releasing hormone receptor activation. Endocrinology 140:2241–2251
  • Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G.. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736
  • Hong, S. H., Wong, C. W., and Privalsky, M. L.. 1998. Signaling by tyrosine kinases negatively regulates the interaction between transcription factors and SMRT (Silencing Mediator of Retinoic acid and Thyroid hormone receptor) corepressor. Mol. Endocrinol. 12:1161–1171
  • Hu, J. M., Bodwell, J. E., and Munck, A.. 1997. Control by basal phosphorylation of cell cycle-dependent, hormone-induced glucocorticoid receptor hyperphosphorylation. Mol. Endocrinol. 11:305–311
  • Ikonen, T., Palvimo, J. J., Kallio, P. J., Reinikainen, P., and Janne, O. A.. 1994. Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology 135:1359–1366
  • Janknecht, R., and Nordheim, A.. 1996. MAP kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. Biochem. Biophys. Res. Commun. 228:831–837
  • Janknecht, R., and Nordheim, A.. 1996. Regulation of the c-fos promoter by the ternary complex factor Sap-1a and its coactivator CBP. Oncogene 12:1961–1969
  • Jenster, G., Spencer, T. E., Burcin, M. M., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1997. Steroid receptor induction of gene transcription—a two step model. Proc. Natl. Acad. Sci. USA 94:7879–7884
  • Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., Kawashima, H., Metzger, D., and Chambon, P.. 1995. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494
  • Kazmi, S. M., Visconti, V., Plante, R. K., Ishaque, A., and Lau, C.. 1993. Differential regulation of human progesterone receptor A and B form-mediated trans-activation by phosphorylation. Endocrinology 133:1230–1238
  • Krstic, M. D., Rogatsky, I., Yamamoto, K. R., and Garabedian, M. J.. 1997. Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol. Cell. Biol. 17:3947–3954
  • Lange-Carter, C. A., and Johnson, G. L.. 1994. Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 265:1458–1461
  • Lavinsky, R. M., Jepsen, K., Heinzel, T., Torchia, J., Mullen, T. M., Schiff, R., Delrio, A. L., Ricote, M., Ngo, S., Gemsch, J., Hilsenbeck, S. G., Osborne, C. K., Glass, C. K., Rosenfeld, M. G., and Rose, D. W.. 1998. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. USA 95:2920–2925
  • Liu, Y. Z., Chrivia, J. C., and Latchman, D. S.. 1998. Nerve growth factor up-regulates the transcriptional activity of CBP through activation of the p42/p44(MAPK) cascade. J. Biol. Chem. 273:32400–32407
  • Liu, Y. Z., Thomas, N. S., and Latchman, D. S.. 1999. CBP associates with the p42/p44 MAPK enzymes and is phosphorylated following NGF treatment. Neuroreport 10:1239–1243
  • Massaad, C., Houard, N., Lombes, M., and Barouki, R.. 1999. Modulation of human mineralocorticoid receptor function by protein kinase A. Mol. Endocrinol. 13:57–65
  • McKenna, N. J., Lanz, R. B., and O'Malley, B. W.. 1999. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20:321–344
  • McKenna, N. J., Nawaz, Z., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1998. Distinct steady-state nuclear receptor coregulator complexes exist in vivo. Proc. Natl. Acad. Sci. USA 95:11697–11702
  • Nazareth, L. V., and Weigel, N. L.. 1996. Activation of the human androgen receptor through a protein kinase A signaling pathway. J. Biol. Chem. 271:19900–19907
  • Nordeen, S. K., Moyer, M. L., and Bona, B. J.. 1994. The coupling of multiple signal transduction pathways with steroid response mechanisms. Endocrinology 134:1723–1732
  • Onate, S. A., Boonyaratanakornkit, V., Spencer, T. E., Tsai, S. Y., Tsai, M. J., Edwards, D. P., and O'Malley, B. W.. 1998. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J. Biol. Chem. 273:12101–12108
  • Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357
  • Parameswaran, N., Disa, J., Spielman, W. S., Brooks, D. P., Nambi, P., and Aiyar, N.. 2000. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor. Eur. J. Pharmacol. 389:125–130
  • Poletti, A., and Weigel, N. L.. 1993. Identification of a hormone-dependent phosphorylation site adjacent to the DNA-binding domain of the chicken progesterone receptor. Mol. Endocrinol. 7:241–246
  • Rowan, B. G., Weigel, N. L., and O'Malley, B. W.. 2000. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 275:4475–4483
  • Smith, C. L., Onate, S. A., Tsai, M. J., and O'Malley, B. W.. 1996. CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc. Natl. Acad. Sci. USA 93:8884–8888
  • Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J. X., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198
  • Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., and Rosenfeld, M. G.. 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684
  • Wagner, B. L., Norris, J. D., Knotts, T. A., Weigel, N. L., and McDonnell, D. P.. 1998. The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 18:1369–1378
  • Webster, J., Prager, D., and Melmed, S.. 1994. Insulin-like growth factor-1 activation of extracellular signal-related kinase-1 and -2 in growth hormone-secreting cells. Mol. Endocrinol. 8:539–544
  • Webster, J. C., Jewell, C. M., Bodwell, J. E., Munck, A., Sar, M., and Cidlowski, J. A.. 1997. Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J. Biol. Chem. 272:9287–9293
  • Weigel, N. L.. 1996. Steroid hormone receptors and their regulation by phosphorylation. Biochem. J. 319:657–667
  • West, M. H. P., Wu, R. S., and Bonner, W. M.. 1984. Polyacrylamide gel electrophoresis of small peptides. Electrophoresis 5:133–138
  • Xu, L., Lavinsky, R. M., Dasen, J. S., Flynn, S. E., McInerney, E. M., Mullen, T. M., Heinzel, T., Szeto, D., Korzus, E., Kurokawa, R., Aggarwal, A. K., Rose, D. W., Glass, C. K., and Rosenfeld, M. G.. 1998. Signal-specific co-activator domain requirements for Pit-1 activation. Nature 395:301–306
  • Yeh, S., Lin, H. K., Kang, H. Y., Thin, T. H., Lin, M. F., and Chang, C.. 1999. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA 96:5458–5463
  • Zanger, K., Cohen, L. E., Hashimoto, K., Radovick, S., and Wondisford, F. E.. 1999. A novel mechanism for cyclic adenosine 3′,5′-monophosphate regulation of gene expression by CREB-binding protein. Mol. Endocrinol. 13:268–275
  • Zhou, Z. X., Kemppainen, J. A., and Wilson, E. M.. 1995. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol. 9:605–615

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.