19
Views
19
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Cell-Type-Specific Regulation of the Retinoic Acid Receptor Mediated by the Orphan Nuclear Receptor TLX

, , &
Pages 8731-8739 | Received 18 Feb 2000, Accepted 18 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410
  • Balkan, W., Colbert, M., Bock, C., and Linney, E.. 1992. Transgenic indicator mice for studying activated retinoic acid receptors during development. Proc. Natl. Acad. Sci. USA 89:3347–3351
  • Berard, J., Gaboury, L., Landers, M., De Repentigny, Y., Houle, B., Kothary, R., and Bradley, W. E.. 1994. Hyperplasia and tumours in lung, breast and other tissues in mice carrying a RAR β4-like transgene. EMBO J. 13:5570–5580
  • Bhattacharyya, N., Dey, A., Minucci, S., Zimmer, A., John, S., Hager, G., and Ozato, K.. 1997. Retinoid-induced chromatin structure alterations in the retinoic acid receptor β2 promoter. Mol. Cell. Biol. 17:6481–6490
  • Chambon, P.. 1996. A decade of molecular biology of retinoic acid receptors. FASEB J. 10:940–954
  • Chen, F., Figueroa, D. J., Marmorstein, A. D., Zhang, Q., Petrukhin, K., Caskey, C. T., and Austin, C. P.. 1999. Retina-specific nuclear receptor: a potential regulator of cellular retinaldehyde-binding protein expressed in retinal pigment epithelium and Muller glial cells. Proc. Natl. Acad. Sci. USA 96:15149–15154
  • Chen, J. Y., Clifford, J., Zusi, C., Starrett, J., Tortolani, D., Ostrowski, J., Reczek, P. R., Chambon, P., and Gronemeyer, H.. 1996. Two distinct actions of retinoid-receptor ligands. Nature 382:819–822
  • Conlon, R. A.. 1995. Retinoic acid and pattern formation in vertebrates. Trends Genet. 11:314–319
  • Davis, K. D., Berrodin, T. J., Stelmach, J. E., Winkler, J. D., and Lazar, M. A.. 1994. Endogenous retinoid X receptors can function as hormone receptors in pituitary cells. Mol. Cell. Biol. 14:7105–7110
  • Davis, K. D., and Lazar, M. A.. 1993. Induction of retinoic acid receptor-β by retinoic acid is cell specific. Endocrinology 132:1469–1474
  • de The, H., Vivanco-Ruiz, M. M., Tiollais, P., Stunnenberg, H., and Dejean, A.. 1990. Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature 343:177–180
  • Dey, A., Minucci, S., and Ozato, K.. 1994. Ligand-dependent occupancy of the retinoic acid receptor β2 promoter in vivo. Mol. Cell. Biol. 14:8191–8201
  • Dilworth, F. J., Fromental-Ramain, C., Remboutsika, E., Benecke, A., and Chambon, P.. 1999. Ligand-dependent activation of transcription in vitro by retinoic acid receptor α/retinoid X receptor α heterodimers that mimics transactivation by retinoids in vivo. Proc. Natl. Acad. Sci. USA 96:1995–2000
  • Escriva, H., Safi, R., Hanni, C., Langlois, M. C., Saumitou-Laprade, P., Stehelin, D., Capron, A., Pierce, R., and Laudet, V.. 1997. Ligand binding was acquired during evolution of nuclear receptors. Proc. Natl. Acad. Sci. USA 94:6803–6808
  • Folkers, G. E., van der Burg, B., and van der Saag, P. T.. 1998. Promoter architecture, cofactors, and orphan receptors contribute to cell-specific activation of the retinoic acid receptor β2 promoter. J. Biol. Chem. 273:32200–32212
  • Ghyselinck, N. B., Dupe, V., Dierich, A., Messaddeq, N., Garnier, J. M., Rochette-Egly, C., Chambon, P., and Mark, M.. 1997. Role of the retinoic acid receptor β (RARβ) during mouse development. Int. J. Dev. Biol. 41:425–447
  • Hollemann, T., Bellefroid, E., and Pieler, T.. 1998. The Xenopus homologue of the Drosophila gene tailless has a function in early eye development. Development 125:2425–2432
  • Jackson, A., Panayiotidis, P., and Foroni, L.. 1998. The human homologue of the Drosophila tailless gene (TLX): characterization and mapping to a region of common deletion in human lymphoid leukemia on chromosome 6q21. Genomics 50:34–43
  • Kastner, P., Mark, M., and Chambon, P.. 1995. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83:859–869
  • Kastner, P., Mark, M., Ghyselinck, N., Krezel, W., Dupe, V., Grondona, J. M., and Chambon, P.. 1997. Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124:313–326
  • Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K., and Umesono, K.. 1999. Identification of a photoreceptor cell-specific nuclear receptor. Proc. Natl. Acad. Sci. USA 96:4814–4819
  • Krust, A., Kastner, P., Petkovich, M., Zelent, A., and Chambon, P.. 1989. A third human retinoic acid receptor, hRAR-γ. Proc. Natl. Acad. Sci. USA 86:5310–5314
  • Ktistaki, E., and Talianidis, I.. 1997. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression. Mol. Cell. Biol. 17:2790–2797
  • Ladias, J. A., and Karathanasis, S. K.. 1991. Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science 251:561–565
  • Lazennec, G., Kern, L., Valotaire, Y., and Salbert, G.. 1997. The nuclear orphan receptors COUP-TF and ARP-1 positively regulate the trout estrogen receptor gene through enhancing autoregulation. Mol. Cell. Biol. 17:5053–5066
  • Lin, B., Chen, G. Q., Xiao, D., Kolluri, S. K., Cao, X., Su, H., and Zhang, X. K.. 2000. Orphan receptor COUP-TF is required for induction of retinoic acid receptor β, growth inhibition, and apoptosis by retinoic acid in cancer cells. Mol. Cell. Biol. 20:957–970
  • Luo, J., Sucov, H. M., Bader, J. A., Evans, R. M., and Giguere, V.. 1996. Compound mutants for retinoic acid receptor (RAR) beta and RAR alpha 1 reveal developmental functions for multiple RAR beta isoforms. Mech. Dev. 55:33–44
  • Mangelsdorf, D. J., and Evans, R. M.. 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850
  • Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schütz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and Evans, R. M.. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839
  • McKenna, N. J., Lanz, R. B., and O'Malley, B. W.. 1999. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20:321–344
  • Mendelsohn, C., Ruberte, E., LeMeur, M., Morriss-Kay, G., and Chambon, P.. 1991. Developmental analysis of the retinoic acid-inducible RAR-β2 promoter in transgenic animals. Development 113:723–734
  • Michaille, J. J., Blanchet, S., Kanzler, B., Garnier, J. M., and Dhouailly, D.. 1994. Characterization of cDNAs encoding the chick retinoic acid receptor γ2 and preferential distribution of retinoic acid receptor γ transcripts during chick skin development. Dev. Dyn. 201:334–343
  • Michaille, J. J., Kanzler, B., Blanchet, S., Garnier, J. M., and Dhouailly, D.. 1995. Characterization of cDNAs encoding two chick retinoic acid receptor α isoforms and distribution of retinoic acid receptor α, β and γ transcripts during chick skin development. Int. J. Dev. Biol. 39:587–596
  • Minucci, S., Horn, V., Bhattacharyya, N., Russanova, V., Ogryzko, V. V., Gabriele, L., Howard, B. H., and Ozato, K.. 1997. A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 94:11295–11300
  • Monaghan, A. P., Bock, D., Gass, P., Schwäger, A., Wolfer, D. P., Lipp, H.-P., and Schütz, G.. 1997. Defective limbic system in mice lacking the tailless gene. Nature 390:515–517
  • Monaghan, A. P., Grau, E., Bock, D., and Schutz, G.. 1995. The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain. Development 121:839–853
  • Nagpal, S., Zelent, A., and Chambon, P.. 1992. RAR-β4, a retinoic acid receptor isoform, is generated from RAR-β2 by alternative splicing and usage of a CUG initiator codon. Proc. Natl. Acad. Sci. USA 89:2718–2722
  • Nohno, T., Muto, K., Noji, S., Saito, T., and Taniguchi, S.. 1991. Isoforms of retinoic acid receptor β expressed in the chicken embryo. Biochim. Biophys. Acta 1089:273–275
  • Noji, S., Nohno, T., Koyama, E., Muto, K., Ohyama, K., Aoki, Y., Tamura, K., Ohsugi, K., Ide, H., Taniguchi, S., and Saito, T.. 1991. Retinoic acid induces polarizing activity but is unlikely to be a morphogen in the chick limb bud. Nature 350:83–86
  • Okada, T. S., Yasuda, K., Araki, M., and Eguchi, G.. 1979. Possible demonstration of multipotential nature of embryonic neural retina by clonal cell culture. Dev. Biol. 68:600–617
  • Reynolds, K., Mezey, E., and Zimmer, A.. 1991. Activity of the β-retinoic acid receptor promoter in transgenic mice. Mech. Dev. 36:15–29
  • Reynolds, K., Zimmer, A. M., and Zimmer, A.. 1996. Regulation of RARβ2 mRNA expression: evidence for an inhibitory peptide encoded in the 5′-untranslated region. J. Cell. Biol. 134:827–835
  • Rossant, J., Zirngibl, R., Cado, D., Shago, M., and Giguere, V.. 1991. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5:1333–1344
  • Rowe, A., Richman, J. M., and Brickell, P. M.. 1992. Development of the spatial pattern of retinoic acid receptor-β transcripts in embryonic chick facial primordia. Development 114:805–813
  • Rowe, A., Richman, J. M., and Brickell, P. M.. 1991. Retinoic acid treatment alters the distribution of retinoic acid receptor-β transcripts in the embryonic chick face. Development 111:1007–1016
  • Sanguedolce, M. V., Leblanc, B. P., Betz, J. L., and Stunnenberg, H. G.. 1997. The promoter context is a decisive factor in establishing selective responsiveness to nuclear class II receptors. EMBO J. 16:2861–2873
  • Shen, S., Kruyt, F. A. E., Hertog, J. D., and van der Saag, P. T.. 1991. Mouse and human retinoic acid receptor β2 promoters: sequence comparison and localization of retinoic acid responsiveness. DNA Sequence 2:111–119
  • Smith, S. M.. 1994. Retinoic acid receptor isoform β2 is an early marker for alimentary tract and central nervous system positional specification in the chicken. Dev. Dyn. 200:14–25
  • Smith, S. M., Dickman, E. D., Power, S. C., and Lancman, J.. 1998. Retinoids and their receptors in vertebrate embryogenesis. J. Nutr. 128:467S–470S
  • Smith, S. M., and Eichele, G.. 1991. Temporal and regional differences in the expression pattern of distinct retinoic acid receptor-β transcripts in the chick embryo. Development 111:245–252
  • Sucov, H. M., Murakami, K. K., and Evans, R. M.. 1990. Characterization of an autoregulated response element in the mouse retinoic acid receptor type β gene. Proc. Natl. Acad. Sci. USA 87:5392–5396
  • Tsai, S. Y., and Tsai, M.-J.. 1997. Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): coming of age. Endocr. Rev. 18:229–240
  • Umesono, K., Murakami, K. K., Thompson, C. C., and Evans, R. M.. 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266
  • Wanek, N., Gardiner, D. M., Muneoka, K., and Bryant, S. V.. 1991. Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature 350:81–83
  • Yao, T. P., Forman, B. M., Jiang, Z., Cherbas, L., Chen, J. D., McKeown, M., Cherbas, P., and Evans, R. M.. 1993. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366:476–479
  • Yu, R. T., Chiang, M. Y., Tanabe, T., Kobayashi, M., Yasuda, K., Evans, R. M., and Umesono, K.. 2000. The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision. Proc. Natl. Acad. Sci. USA 97:2621–2625
  • Yu, R. T., McKeown, M., Evans, R. M., and Umesono, K.. 1994. Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature 370:375–379
  • Zelent, A., Krust, A., Petkovich, M., Kastner, P., and Chambon, P.. 1989. Cloning of murine α and β retinoic acid receptors and a novel receptor γ predominantly expressed in skin. Nature 339:714–717
  • Zelent, A., Mendelsohn, C., Kastner, P., Krust, A., Garnier, J. M., Ruffenach, F., Leroy, P., and Chambon, P.. 1991. Differentially expressed isoforms of the mouse retinoic acid receptor β are generated by usage of two promoters and alternative splicing. EMBO J. 10:71–81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.