36
Views
222
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Damage Tolerance Protein Mus81 Associates with the FHA1 Domain of Checkpoint Kinase Cds1

, , , , &
Pages 8758-8766 | Received 30 Jun 2000, Accepted 07 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Aravind, L., Walker, R. W., and Koonin, E. V.. 1999. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res. 27:1223–1242
  • Baber-Furnari, B. A., Rhind, N., Boddy, M. N., Shanahan, P., Lopez-Girona, A., and Russell, P.. 2000. Regulation of mitotic inhibitor Mik1 helps to enforce the DNA damage checkpoint. Mol. Biol. Cell 11:1–11
  • Bahler, J., Wu, J., Longtine, M. S., Shah, N. G., McKenzie, A., Steever, A. B., Wach, A., Phileppsen, P., and Pringle, J. R.. 1998. Heterologous modules for efficient and versatile PCR-based gene targetting in Schizosaccharomyces pombe. Yeast 14:943–951
  • Bashkirov, V. I., King, J. S., Bashkirova, E. V., Schmuckli-Maurer, J., and Heyer, W.-D.. 2000. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol. Cell. Biol. 20:4393–4404
  • Bell, D. W., Varley, J. M., Szydlo, T. E., Kang, D. H., Wahrer, D. C., Shannon, K. E., Lubratovich, M., Verselis, S. J., Isselbacher, K. J., Fraumeni, J. F., Birch, J. M., Li, F. P., Garber, J. E., and Haber, D. A.. 1999. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528–2531
  • Bhaumik, D., and Wang, T. S. F.. 1998. Mutational effect of fission yeast polalpha on cell cycle events. Mol. Biol. Cell 9:2107–2123
  • Blasina, A., Van de Weyer, I., Laus, M. C., Luyten, W. H. M. L., Parker, A. E., and McGowan, C. H.. 1999. A human homolog of the checkpoint kinase Cds1 directly inhibits Cdc25. Curr. Biol. 9:1–10
  • Boddy, M. N., Furnari, B., Mondesert, O., and Russell, P.. 1998. Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280:909–912
  • Brown, A. L., Lee, C. H., Schwarz, J. K., Mitiku, N., Piwnica-Worms, H., and Chung, J. H.. 1999. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 96:3745–3750
  • Chakraverty, R. K., and Hickson, I. D.. 1999. Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. Bioessays 21:286–294
  • Chehab, N. H., Malikzay, A., Appel, M., and Halazonetis, T. D.. 2000. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14:278–288
  • Christensen, P. U., Bentley, N. J., Martinho, R. G., Nielsen, O., and Carr, A. M.. 2000. Mik1 levels accumulate in S phase and may mediate an intrinsic link between S phase and mitosis. Proc. Natl. Acad. Sci. USA 97:2579–2584
  • Claudette, L. D., Dixon, J., Osman, F., and Whitby, M. C.. 2000. Partial suppression of the fission yeast rqh1(−) phenotype by expression of a bacterial Holliday junction resolvase. EMBO J. 19:2751–2762
  • Doherty, A. J., Serpell, L. C., and Ponting, C. P.. 1996. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 24:2488–2497
  • Durocher, D., Henckel, J., Fersht, A. R., and Jackson, S. P.. 1999. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4:387–394
  • Elledge, S. J.. 1996. Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672
  • Friedberg, E. C., Walker, G. C., and Siede, W.. 1995. DNA repair and mutagenesis. ASM Press, Washington, D.C.
  • Furnari, B., Blasina, A., Boddy, M. N., McGowan, C. H., and Russell, P.. 1999. Cdc25 inhibited in vitro and in vivo by checkpoint kinases Cds1 and Chk1. Mol. Biol. Cell 10:833–845
  • Haber, J. E.. 1999. DNA recombination: the replication connection. Trends Biochem. Sci. 24:271–275
  • Hirao, A., Kong, Y. Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S. J., and Mak, T. W.. 2000. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827
  • Huang, M., Zhou, Z., and Elledge, S. J.. 1998. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94:595–605
  • Interthal, H., and Heyer, W.-D.. 2000. MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol. Gen. Genet. 263:812–827
  • Khasanov, F. K., Savchenko, G. V., Bashkirova, E. V., Korolev, V. G., Heyer, W.-D., and Bashkirov, V. I.. 1999. A new recombinational DNA repair gene from Schizosaccharomyces pombe with homology to Escherichia coli RecA. Genetics 152:1557–1572
  • Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H., and Chung, J. H.. 2000. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–204
  • Li, J., Smith, G. P., and Walker, J. C.. 1999. Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain. Proc. Natl. Acad. Sci. USA 96:7821–7826
  • Lindsay, H., Griffiths, D., Edwards, R., Christensen, P., Murray, J., Osman, F., Walworth, N., and Carr, A.. 1998. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12:382–395
  • Matsuoka, S., Huang, M., and Elledge, S. J.. 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897
  • Murakami, H., and Okayama, H.. 1995. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374:817–819
  • Muris, D. F., Vreeken, K., Carr, A. M., Broughton, B. C., Lehmann, A. R., Lohman, P. H., and Pastink, A.. 1993. Cloning the RAD51 homologue of Schizosaccharomyces pombe. Nucleic Acids Res. 21:4586–4591
  • Muris, D. F., Vreeken, K., Carr, A. M., Murray, J. M., Smit, C., Lohman, P. H., and Pastink, A.. 1996. Isolation of the Schizosaccharomyces pombe RAD54 homologue, rhp54+, a gene involved in the repair of radiation damage and replication fidelity. J. Cell Sci. 109:73–81
  • Murray, J. M., Lindsay, H. D., Munday, C. A., and Carr, A. M.. 1997. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol. 17:6868–6875
  • Paulovich, A. G., and Hartwell, L. H.. 1995. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82:841–847
  • Pellicioli, A., Lucca, C., Liberi, G., Marini, F., Lopes, M., Plevani, P., Romano, A., Paolo Di Fiore, P., and Foiani, M.. 1999. Activation of rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18:6561–6572
  • Rhind, N., and Russell, P.. 1998. The Schizosaccharomyces pombe S-phase checkpoint differentiates between different types of DNA damage. Genetics 149:1729–1737
  • Santocanale, C., and Diffley, J. F.. 1998. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618
  • Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C.. 2000. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14:289–300
  • Shirahige, K., Hori, Y., Shiraishi, K., Yamashita, M., Takahashi, K., Obuse, C., Tsurimoto, T., and Yoshikawa, H.. 1998. Regulation of DNA-replication origins during cell-cycle progression. Nature 395:618–621
  • Sidorova, J. M., and Breeden, L. L.. 1997. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae. Genes Dev. 11:3032–3045
  • Sijbers, A. M., de Laat, W. L., Ariza, R. R., Biggerstaff, M., Wei, Y. F., Moggs, J. G., Carter, K. C., Shell, B. K., Evans, E., de Jong, M. C., Rademakers, S., de Rooij, J., Jaspers, N. G., Hoeijmakers, J. H., and Wood, R. D.. 1996. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86:811–822
  • Stewart, E., Chapman, C., Al-Khodairy, F., Carr, A., and Enoch, T.. 1997. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16:2682–2692
  • Sun, Z., Hsiao, J., Fay, S. F., and Stern, D. F.. 1998. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281:272–274
  • Suto, K., Nagata, A., Murakami, H., and Okayama, H.. 1999. A double-strand break repair component is essential for S phase completion in fission yeast cell cycling. Mol. Biol. Cell 10:3331–3343
  • Walworth, N., Davey, S., and Beach, D.. 1993. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363:368–371
  • Weinreich, M., and Stillman, B.. 1999. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 18:5334–5346
  • Woodgate, R.. 1999. A plethora of lesion-replicating DNA polymerases. Genes Dev. 13:2191–2195
  • Yonemasu, R., McCready, S. J., Murray, J. M., Osman, F., Takao, M., Yamamoto, K., Lehmann, A. R., and Yasui, A.. 1997. Characterization of the alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe. Nucleic Acids Res. 25:1553–1558
  • Zeng, Y., Forbes, K. C., Wu, Z., Moreno, S., Piwnica-Worms, H., and Enoch, T.. 1998. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395:507–510
  • Zou, H., and Rothstein, R.. 1997. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.