18
Views
97
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Novel Rb- and p300-Binding Protein Inhibits Transactivation by MyoD

, , &
Pages 8903-8915 | Received 08 May 2000, Accepted 14 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Abdellatif, M., and Schneider, M. D.. 1997. An effector-like function of Ras GTPase-activating protein predominates in cardiac muscle cells. J. Biol. Chem. 272:525–533
  • Austen, M., Luscher, B., and Luscher-Firzlaff, J. M.. 1997. Characterization of the transcriptional regulator YY1. The bipartite transactivation domain is independent of interaction with the TATA box-binding protein, transcription factor IIB, TAFII55, or cAMP-responsive element-binding protein (CPB)-binding protein. J. Biol. Chem. 272:1709–1717
  • Bains, W., Ponte, P., Blau, H., and Kedes, L.. 1984. Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Mol. Cell. Biol. 4:1449–1453
  • Bishopric, N. H., Zeng, G. Q., Sato, B., and Webster, K. A.. 1997. Adenovirus E1A inhibits cardiac myocyte-specific gene expression through its amino terminus. J. Biol. Chem. 272:20584–20594
  • Buyse, I. M., Shao, G., and Huang, S.. 1995. The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E1A protein. Proc. Natl. Acad. Sci. USA 92:4467–4471
  • Chakravarti, D., Ogryzko, V., Kao, H. Y., Nash, A., Chen, H., Nakatani, Y., and Evans, R. M.. 1999. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96:393–403
  • Charng, M. J., Zhang, D., Kinnunen, P., and Schneider, M. D.. 1998. A novel protein distinguishes between quiescent and activated forms of the type I transforming growth factor beta receptor. J. Biol. Chem. 273:9365–9368
  • Chen, P. L., Riley, D. J., Chen-Kiang, S., and Lee, W. H.. 1996. Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6. Proc. Natl. Acad. Sci. USA 93:465–469
  • Chen, P. L., Riley, D. J., Chen, Y., and Lee, W. H.. 1996. Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev. 10:2794–2804
  • Choubey, D., and Lengyel, P.. 1995. Binding of an interferon-inducible protein (p202) to the retinoblastoma protein. J. Biol. Chem. 270:6134–6140
  • Deng, W. P., and Nickoloff, J. A.. 1992. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem. 200:81–88
  • Durfee, T., Becherer, K., Chen, P.-L., Yeh, S.-H., Yang, Y., Kilburn, A. E., Lee, W.-H., and Elledge, S. J.. 1993. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7:555–569
  • Dyson, N., Guida, P., Munger, K., and Harlow, E.. 1992. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J. Virol. 66:6893–6902
  • Eckner, R., Ewen, M. E., Newsome, D., Gerdes, M., DeCaprio, J. A., Lawrence, J. B., and Livingston, D. M.. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8:869–884
  • Eckner, R., Yao, T. P., Oldread, E., and Livingston, D. M.. 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10:2478–2490
  • Flink, I. L., Oana, S., Maitra, N., Bahl, J. J., and Morkin, E.. 1998. Changes in E2F complexes containing retinoblastoma protein family members and increased cyclin-dependent kinase inhibitor activities during terminal differentiation of cardiomyocytes. J. Mol. Cell. Cardiol. 30:563–578
  • Gietz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H.. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425
  • Graham, F. L., and Prevec, L.. Methods in molecular biology 7: The Humana Press, Inc., Clifton, N.J
  • Gu, W., Schneider, J. W., Conderstil, G., Kaushai, S., Mahdavi, V., and Nadal-Ginard, B.. 1993. 1991. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72:309–324
  • Guarente, L.. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101:181–191
  • Guo, K., and Walsh, K.. 1997. Inhibition of myogenesis by multiple cyclin-Cdk complexes. Coordinate regulation of myogenesis and cell cycle activity at the level of E2F. J. Biol. Chem. 272:791–797
  • Gustafson, T. A., and Kedes, L.. 1989. Identification of multiple proteins that interact with functional regions of the human cardiac alpha-actin promoter. Mol. Cell. Biol. 9:3269–3283
  • Hamamori, Y., Sartorelli, V., Ogryzko, V., Puri, P. L., Wu, H. Y., Wang, J. Y., Nakatani, Y., and Kedes, L.. 1999. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96:405–413
  • Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J.. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816
  • Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N., and Klein, W. H.. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364:501–506
  • Hoffman, C. S., and Winston, F.. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272
  • Ip, H. S., Wilson, D. B., Heikinheimo, M., Tang, Z., Ting, C.-N., Simon, M. C., Leiden, J. M., and Parmacek, M. S.. 1994. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol. Cell. Biol. 14:7517–7526
  • Jones, R. E., Wegrzyn, R. J., Patrick, D. R., Balishin, N. L., Vuocolo, G. A., Riemen, M. W., Defeo-Jones, D., Garsky, V. M., Heimbrook, D. C., and Oliff, A.. 1990. Identification of HPV-16 E7 peptides that are potent antagonists of E7 binding to the retinoblastoma suppressor protein. J. Biol. Chem. 265:12782–12785
  • Kato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E., and Sherr, C. J.. 1993. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7:331–342
  • Kim, S. J., Onwuta, U. S., Lee, Y. I., Li, R., Botchan, M. R., and Robbins, P. D.. 1992. The retinoblastoma gene product regulates Sp1-mediated transcription. Mol. Cell. Biol. 12:2455–2463
  • Kirshenbaum, L. A., Chakraborty, S., and Schneider, M. D.. 1996. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev. Biol. 179:402–411
  • Kirshenbaum, L. A., and Schneider, M. D.. 1995. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein- and p300-binding domains. J. Biol. Chem. 270:7791–7794
  • Kraus, W. L., Manning, E. T., and Kadonaga, J. T.. 1999. Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol. Cell. Biol. 19:8123–8135
  • Larose, A., Dyson, N., Sullivan, M., Harlow, E., and Bastin, M.. 1991. Polyomavirus large T mutants affected in retinoblastoma protein binding are defective in immortalization. J. Virol. 65:2308–2313
  • Lavender, P., Vandel, L., Bannister, A. J., and Kouzarides, T.. 1997. The HMG-box transcription factor HBP1 is targeted by the pocket proteins and E1A. Oncogene 14:2721–2728
  • Lee, E. Y., Hu, N., Yuan, S. S., Cox, L. A., Bradley, A., Lee, W.-H., and Herrup, K.. 1994. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8:2008–2021
  • Lee, T. C., Zhang, Y., and Schwartz, R. J.. 1994. Bifunctional transcriptional properties of YY1 in regulating muscle actin and c-myc gene expression during myogenesis. Oncogene 9:1047–1052
  • Lipinski, M. M., and Jacks, T.. 1999. The retinoblastoma gene family in differentiation and development. Oncogene 18:7873–7882
  • Liu, Y., and Kitsis, R. N.. 1996. Induction of DNA synthesis and apoptosis in cardiac myocytes by E1A oncoprotein. J. Cell Biol. 133:325–334
  • MacLellan, W. R., Lee, T.-C., Schwartz, R. J., and Schneider, M. D.. 1994. Transforming growth factor-β response elements of the skeletal α-actin gene. J. Biol. Chem. 269:16754–16760
  • Missero, C., Calautti, E., Eckner, R., Chin, J., Tsai, L. H., Livingston, D. M., and Dotto, G. P.. 1995. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc. Natl. Acad. Sci. USA 92:5451–5455
  • Miyake, S., Sellers, W. R., Safran, M., Li, X., Zhao, W., Grossman, S. R., Gan, J., DeCaprio, J. A., Adams, P. D., Kaelin, W. G.Jr.. 2000. Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol. Cell. Biol. 20:8889–8902
  • Molkentin, J. D., Black, B. L., Martin, J. F., and Olson, E. N.. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136
  • Novitch, B. G., Mulligan, G. J., Jacks, T., and Lassar, A. B.. 1996. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J. Cell Biol. 135:441–456
  • Novitch, B. G., Spicer, D. B., Kim, P. S., Cheung, W. L., and Lassar, A. B.. 1999. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr. Biol. 9:449–459
  • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Paradis, P., MacLellan, W. R., Belaguli, N. S., Schwartz, R. J., and Schneider, M. D.. 1996. Serum response factor mediates AP-1-dependent induction of the skeletal α-actin promoter in ventricular myocytes. J. Biol. Chem. 271:10827–10833
  • Parker, T. G., Packer, S. E., and Schneider, M. D.. 1990. Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J. Clin. Investig. 85:507–514
  • Puri, P. L., Avantaggiati, M. L., Balsano, C., Sang, N., Graessmann, A., Giordano, A., and Levrero, M.. 1997. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16:369–383
  • Qin, X.-Q., Livingston, D. M., Ewen, M., Sellers, W. R., Arany, Z., Kaelin, W. G.Jr.. 1995. The transcription factor E2F-1 is a downstream target of RB action. Mol. Cell. Biol. 15:742–755
  • Rao, S. S., Chu, C., and Kohtz, D. S.. 1994. Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol. Cell. Biol. 14:5259–5267
  • Rawls, A., and Olson, E. N.. 1997. MyoD meets its maker. Cell 89:5–8
  • Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M.. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563–564
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sartorelli, V., Huang, J., Hamamori, Y., and Kedes, L.. 1989. 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17:1010–1026
  • Sartorelli, V., Puri, P. L., Hamamori, Y., Ogryzko, V., Chung, G., Nakatani, Y., Wang, J. Y., and Kedes, L.. 1999. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4:725–734
  • Schneider, J. W., Gu, W., Zhu, L., Mahdavi, V., and Nadal-Ginard, B.. 1994. Reversal of terminal differentiation mediated by p107 in Rb−/− muscle cells. Science 264:1467–1471
  • Sellers, W. R., Novitch, B. G., Miyake, S., Heith, A., Otterson, G. A., Kaye, F. J., Lassar, A. B., and Kaelin, W. G. J.. 1998. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev. 12:95–106
  • Sellers, W. R., Rodgers, J. W., and Kaelin, W. G. J.. 1995. A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc. Natl. Acad. Sci. USA 92:11544–11548
  • Shih, H. H., Tevosian, S. G., and Yee, A. S.. 1998. Regulation of differentiation by HBP1, a target of the retinoblastoma protein. Mol. Cell. Biol. 18:4732–4743
  • Shirodkar, S., Ewen, M., DeCaprio, J. A., Morgan, J., Livingston, D. M., and Chittenden, T.. 1992. The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 68:157–166
  • Singh, P., Coe, J., and Hong, W.. 1995. A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374:562–565
  • Skapek, S. X., Rhee, J., Kim, P. S., Novitch, B. G., and Lassar, A. B.. 1996. Cyclin-mediated inhibition of muscle gene expression via a mechanism that is independent of pRB hyperphosphorylation. Mol. Cell. Biol. 16:7043–7053
  • Stein, R. W., Corrigan, M., Yaciuk, P., Whelan, J., and Moran, E.. 1990. Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J. Virol. 64:4421–4427
  • Sternberg, E. A., Spizz, G., Perry, W. M., Vizard, D., Weil, T., and Olson, E. N.. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909
  • Tajbakhsh, S., Rocancourt, D., Cossu, G., and Buckingham, M.. 1997. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138
  • Tam, S. K. C., Gu, W., Mahdavi, V., and Nadal-Ginard, B.. 1995. Cardiac myocyte terminal differentiation. Potential for cardiac regeneration. Ann. N. Y. Acad. Sci. 752:72–79
  • Taya, Y.. 1997. RB kinases and RB-binding proteins: new points of view. Trends Biochem. Sci. 22:14–17
  • Tiainen, M., Spitkovsky, D., Jansen-Durr, P., Sacchi, A., and Crescenzi, M.. 1996. Expression of E1A in terminally differentiated muscle cells reactivates the cell cycle and suppresses tissue-specific genes by separable mechanisms. Mol. Cell. Biol. 16:5302–5312
  • Trouche, D., and Kouzarides, T.. 1996. E2F1 and E1A(12S) have a homologous activation domain regulated by RB and CBP. Proc. Natl. Acad. Sci. USA 93:1439–1442
  • Venuti, J. M., Morris, J. H., Vivian, J. L., Olson, E. N., and Klein, W. H.. 1995. Myogenin is required for late but not early aspects of myogenesis during mouse development. J. Cell Biol. 128:563–576
  • Wang, J., Helin, K., Jin, P., and Nadal-Ginard, B.. 1995. Inhibition of in vitro myogenic differentiation by cellular transcription factor E2F1. Cell Growth Differ. 6:1299–1306
  • Weintraub, S. J., Chow, K. N., Luo, R. X., Zhang, S. H., He, S., and Dean, D. C.. 1995. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375:812–815
  • Wiman, K. G.. 1993. The retinoblastoma gene: role in cell cycle control and cell differentiation. FASEB J. 7:841–845
  • Yang, M., Wu, Z., and Fields, S.. 1995. Protein-peptide interactions analyzed with the yeast two-hybrid system. Nucleic Acids Res. 23:1152–1156
  • Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H., and Nakatani, Y.. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324
  • Yuan, W., Condorelli, G., Caruso, M., Felsani, A., and Giordano, A.. 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271:9009–9013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.