20
Views
213
CrossRef citations to date
0
Altmetric
Cell Growth and Development

[URE3] Prion Propagation in Saccharomyces cerevisiae: Requirement for Chaperone Hsp104 and Curing by Overexpressed Chaperone Ydj1p

, &
Pages 8916-8922 | Received 03 Jul 2000, Accepted 11 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Alper, T., Cramp, W. A., Haig, D. A., and Clarke, M. C.. 1967. Does the agent of scrapie replicate without nucleic acid? Nature 214:764–766
  • Atencio, D., and Yaffe, M.. 1992. MAS5, a yeast homolog of DnaJ involved in mitochondrial import. Mol. Cell. Biol. 12:283–291
  • Bechet, J., Grenson, M., and Wiame, J. M.. 1970. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12:31–39
  • Becker, J., Walter, W., Yan, W., and Craig, E. A.. 1996. Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol. Cell. Biol. 16:4378–4386
  • Boeke, J. D., LaCroute, F., and Fink, G. R.. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346
  • Burns, N., Grimwade, B., Ross-Macdonald, P. B., Choi, E. Y., Finberg, K., Roeder, G. S., and Snyder, M.. 1994. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8:1087–1105
  • Caplan, A., and Douglas, M. G.. 1991. Characterization of YDJ1: a yeast homolog of the bacterial dnaJ protein. J. Cell Biol. 114:609–621
  • Chabry, J., Caughey, B., and Chesebro, B.. 1998. Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J. Biol. Chem. 273:13203–13207
  • Chernoff, Y. O., Lindquist, S. L., Ono, B.-I., Inge-Vechtomov, S. G., and Liebman, S. W.. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884
  • Chernoff, Y. O., and Ono, B.-I.. 1992. Dosage-dependent modifiers of PSI-dependent omnipotent suppression in yeast Protein synthesis and targeting in yeast. Brown, A. J. P., Tuite, M. F., and McCarthy, J. E. G. 101–107 Springer-Verlag, Berlin, Germany
  • Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H., and Hieter, P.. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122
  • Conde, J., and Fink, G. R.. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73:3651–3655
  • Cooper, T. G.. Nitrogen metabolism in Saccharomyces cerevisiae The molecular biology of the yeast Saccharomyces: metabolism and gene expression Strathern, J. N., Jones, E. W., and Broach, J. R. 2:39–99 Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Coschigano, P. W., and Magasanik, B.. 1991. 1982. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol. Cell. Biol. 11:822–832
  • Cox, B. S.. 1965. PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505–521
  • Derkatch, I. L., Bradley, M. E., Masse, S. V., Zadorsky, S. P., Polozkov, G. V., Inge-Vechtomov, S. G., and Liebman, S. W.. 2000. Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J. 19:1942–1952
  • Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O., and Liebman, S. W.. 1997. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519
  • Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G., and Liebman, S. W.. 1996. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386
  • Drillien, R., Aigle, M., and Lacroute, F.. 1973. Yeast mutants pleiotropically impaired in the regulation of the two glutamate dehydrogenases. Biochem. Biophys. Res. Commun. 53:367–372
  • Edskes, H. K., Gray, V. T., and Wickner, R. B.. 1999. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl. Acad. Sci. USA 96:1498–1503
  • Edskes, H. K., Hanover, J. A., and Wickner, R. B.. 1999. Mks1p is a regulator of nitrogen catabolism upstream of Ure2p in Saccharomyces cerevisiae. Genetics 153:585–594
  • Edskes, H. K., and Wickner, R. B.. 2000. A protein required for prion generation: [URE3] induction requires the Ras-regulated Mks1 protein. Proc. Natl. Acad. Sci. USA 97:6625–6629
  • Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A.. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360
  • Glover, J. R., Kowal, A. S., Shirmer, E. C., Patino, M. M., Liu, J.-J., and Lindquist, S.. 1997. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819
  • Glover, J. R., and Lindquist, S.. 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82
  • Griffith, J. S.. 1967. Self-replication and scrapie. Nature 215:1043–1044
  • Jung, G., Jones, G., Wegrzyn, R. D., and Masison, D. C.. 2000. A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress. Genetics, 156:559–570
  • King, C.-Y., Tittmann, P., Gross, H., Gebert, R., Aebi, M., and Wuthrich, K.. 1997. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. USA 94:6618–6622
  • Kirschner, D. A., Teplow, D. B., and Damas, A. M.. 2000. Twist and sheet: variations on the theme of amyloid. J. Struct. Biol. 130:87–130
  • Kushnirov, V. V., Kochneva-Pervukhova, N. V., Cechenova, M. B., Frolova, N. S., and Ter-Avanesyan, M. D.. 2000. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 19:324–331
  • Lacroute, F.. 1971. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106:519–522
  • Lansbury, P. T., and Caughey, B.. 1995. The chemistry of scrapie infection: implications of the ‘ice 9’ metaphor. Curr. Biol. 2:1–5
  • Liebman, S. W., and Derkatch, I. L.. 1999. The yeast [PSI+] prion: making sense out of nonsense. J. Biol. Chem. 274:1181–1184
  • Lu, Z., and Cyr, D. M.. 1998. Protein folding activity of Hsp70 is modified differentially by the Hsp40 co-chaperones Sis1 and Ydj1. J. Biol. Chem. 273:27824–27830
  • Ma, H., Kunes, S., Schatz, P. J., and Botstein, D.. 1987. Plasmid construction by homologous recombination in yeast. Gene 58:201–216
  • Magasanik, B.. Regulation of nitrogen utilization The molecular and cellular biology of the yeast Saccharomyces, 2nd ed. Jones, E. W., Pringle, J. R., and Broach, J. R. 2:283–317 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Masison, D. C., Maddelein, M.-L., and Wickner, R. B.. 1997. 1992. The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc. Natl. Acad. Sci. USA 94:12503–12508
  • Masison, D. C., and Wickner, R. B.. 1995. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95
  • Meacham, G. C., Browne, B. L., Zhang, W., Kellermayer, R., Bedwell, D. M., and Cyr, D. M.. 1999. Mutations in the yeast Hsp40 chaperone protein Ydj1 cause defects in Axl1 biogenesis and pro-a-factor processing. J. Biol. Chem. 274:34396–34402
  • Parsell, D. A., Kowal, A. S., Singer, M. A., and Lindquist, S.. 1994. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478
  • Patino, M. M., Liu, J.-J., Glover, J. R., and Lindquist, S.. 1996. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626
  • Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D.. 1997. In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277:381–383
  • Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D.. 1996. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15:3127–3134
  • Prusiner, S. B.. 1982. Novel proteinaceous infectious particles cause scrapie. Science 216:136–144
  • Prusiner, S. B.. 1998. Prions. Proc. Natl. Acad. Sci. USA 95:13363–13383
  • Prusiner, S. B., Scott, M., Foster, D., Pan, K.-M., Groth, D., Mirenda, C., Torchia, M., Yang, S.-L., Serban, D., Carlson, G. A., Hoppe, P. C., Westaway, D., and DeArmond, S. J.. 1990. Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63:673–686
  • Rai, R., Genbauffe, F., Lea, H. Z., and Cooper, T. G.. 1987. Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J. Bacteriol. 169:3521–3524
  • Riles, L., Dutchik, J. E., Baktha, A., McCauley, B. K., Thayer, E. C., Leckie, M. P., Braden, V. V., Depke, J. E., and Olson, M. V.. 1993. Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics 134:81–150
  • Schirmer, E. C., and Lindquist, S.. 1997. Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc. Natl. Acad. Sci. USA 94:13932–13937
  • Sherman, F.. 1991. Getting started with yeast. Methods Enzymol. 194:3–21
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Stansfield, I., Jones, K. M., Kushnirov, V. V., Dagkesamanskaya, A. R., Poznyakovski, A. I., Paushkin, S. V., Nierras, C. R., Cox, B. S., Ter-Avanesyan, M. D., and Tuite, M. F.. 1995. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14:4365–4373
  • Taylor, K. L., Cheng, N., Williams, R. W., Steven, A. C., and Wickner, R. B.. 1999. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283:1339–1343
  • Turoscy, V., and Cooper, T. G.. 1987. Ureidosuccinate is transported by the allantoate transport system in Saccharomyces cerevisiae. J. Bacteriol. 169:2598–2600
  • Weissmann, C.. 1999. Molecular genetics of transmissible spongiform encephalopathies. J. Biol. Chem. 274:3–6
  • Wickner, R. B.. 1994. Evidence for a prion analog in S. cerevisiae: the [URE3] non-Mendelian genetic element as an altered URE2 protein. Science 264:566–569
  • Wickner, R. B.. 1997. Prion diseases of mammals and yeast: molecular mechanisms and genetic features. R. G. Landes Company, Austin, Tex
  • Wickner, R. B., and Chernoff, Y.. 1999. Prions of yeast and fungi: [URE3], [PSI] and [Het-s] discovered as heritable traits Prions. Prusiner, S. B. 229–272 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Wickner, R. B., Edskes, H. K., Maddelein, M.-L., Taylor, K. L., and Moriyama, H.. 1999. Prions of yeast and fungi: proteins as genetic material. J. Biol. Chem. 274:555–558
  • Zhouravleva, G., Frolova, L., LeGoff, X., LeGuellec, R., Inge-Vectomov, S., Kisselev, L., and Philippe, M.. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14:4065–4072

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.