32
Views
111
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Vav3 Mediates Receptor Protein Tyrosine Kinase Signaling, Regulates GTPase Activity, Modulates Cell Morphology, and Induces Cell Transformation

, , , , , , & show all
Pages 9212-9224 | Received 22 Jun 2000, Accepted 25 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Abe, K., Rossman, K. L., Liu, B., Ritola, K. D., Chiang, D., Campbell, S. L., Burridge, K., and Der, C. J.. 2000. Vav2 is an activator of Cdc42, Rac1, and RhoA. J. Biol. Chem. 275:10141–10149
  • Bartel, P. L., Chien, C. T., Sternglanz, R., and Fields, S.. 1993. Using the two-hybrid system to detect protein-protein interactions Cellular interactions in development: a practical approach. Hartley, D. A. 153–179 Oxford University Press, Oxford, United Kingdom
  • Bertagnolo, V., Marchisio, M., Volinia, S., Caramelli, E., and Capitani, S.. 1998. Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-γ 1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett. 441:480–484
  • Bubeck Wardenburg, J., Pappu, R., Bu, J. Y., Mayer, B., Chernoff, J., Straus, D., and Chan, A. C.. 1998. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9:607–616
  • Bustelo, X. R.. 2000. Regulatory and signaling properties of the Vav family. Mol. Cell. Biol. 20:1461–1477
  • Bustelo, X. R.. 1996. The VAV family of signal transduction molecules. Crit. Rev. Oncog. 7:65–88
  • Bustelo, X. R., Ledbetter, J. A., and Barbacid, M.. 1992. Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 356:68–71
  • Chen, J., Heller, D., Poon, B., Kang, L., and Wang, L.-H.. 1991. The proto-oncogene c-ros codes for a transmembrane tyrosine protein kinase sharing sequence and structural homology with sevenless protein of Drosophila melanogaster. Oncogene 6:257–264
  • Chen, J., Zong, C. S., and Wang, L.-H.. 1994. Tissue and epithelial cell-specific expression of chicken proto-oncogene c-ros in several organs suggests that it may play roles in their development and mature functions. Oncogene 9:773–780
  • Collins, T. L., Deckert, M., and Altman, A.. 1997. Views on Vav. Immunol. Today 18:221–225
  • Coppola, J., Bryant, S., Koda, T., Conway, D., and Barbacid, M.. 1991. Mechanism of activation of the vav protooncogene. Cell Growth Differ. 2:95–105
  • Crespo, P., Bustelo, X. R., Aaronson, D. S., Coso, O. A., Lopez-Barahona, M., Barbacid, M., and Gutkind, J. S.. 1996. Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav. Oncogene 13:455–460
  • Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S., and Bustelo, X. R.. 1997. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385:169–172
  • De Sepulveda, P., Okkenhaug, K., Rose, J. L., Hawley, R. G., Dubreuil, P., and Rottapel, R.. 1999. Socs1 binds to multiple signaling proteins and suppresses steel factor-dependent proliferation. EMBO J. 18:904–915
  • Durfee, T., Becherer, K., Chen, P.-L., Yeh, S.-H., Yang, Y., Kilbrun, A. E., Lee, W.-H., and Elledge, S. J.. 1993. The retinoblastoma protein associates with the protein phosphatase type I catalytic subunit. Genes Dev. 7:555–569
  • Fischer, K. D., Kong, Y. Y., Nishina, H., Tedford, K., Marengere, L. E., Kozieradzki, I., Sasaki, T., Starr, M., Chan, G., Gardener, S., Nghiem, M. P., Bouchard, D., Barbacid, M., Bernstein, A., and Penninger, J. M.. 1998. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8:554–562
  • Germani, A., Romero, F., Houlard, M., Camonis, J., Gisselbrecht, S., Fischer, S., and Varin-Blank, N.. 1999. hSiah2 is a new Vav binding protein which inhibits Vav-mediated signaling pathways. Mol. Cell. Biol. 19:3798–3807
  • Gringhuis, S. I., de Leij, L. F., Coffer, P. J., and Vellenga, E.. 1998. Signaling through CD5 activates a pathway involving phosphatidylinositol 3-kinase, Vav, and Rac1 in human mature T lymphocytes. Mol. Cell. Biol. 18:1725–1735
  • Hall, A.. 1998. Rho GTPases and the actin cytoskeleton. Science 279:509–514
  • Han, J., Das, B., Wei, W., Van Aelst, L., Mosteller, R. D., Khosravi-Far, R., Westwick, J. K., Der, C. J., and Broek, D.. 1997. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol. 17:1346–1353
  • Han, J., Luby-Phelps, K., Das, B., Shu, X., Xia, Y., Mosteller, R. D., Krishna, U. M., Falck, J. R., White, M. A., and Broek, D.. 1998. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560
  • Henske, E. P., Short, M. P., Jozwiak, S., Bovey, C. M., Ramlakhan, S., Haines, J. L., and Kwiatkowski, D. J.. 1995. Identification of VAV2 on 9q34 and its exclusion as the tuberous sclerosis gene TSC1. Ann. Hum. Genet. 59:25–37
  • Holsinger, L. J., Spencer, D. M., Austin, D. J., Schreiber, S. L., and Crabtree, G. R.. 1995. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc. Natl. Acad. Sci. USA 92:9810–9814
  • Ito, H., Fukuda, Y., Murata, K., and Kimura, A.. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168
  • Katzav, S., Cleveland, J. L., Heslop, H. E., and Pulido, D.. 1991. Loss of the amino-terminal helix-loop-helix domain of the vav proto-oncogene activates its transforming potential. Mol. Cell. Biol. 11:1912–1920
  • Katzav, S., Martin-Zanca, D., and Barbacid, M.. 1989. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 8:2283–2290
  • Kranenburg, O., Poland, M., van Horck, F. P., Drechsel, D., Hall, A., and Moolenaar, W. H.. 1999. Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction. Mol. Biol. Cell 10:1851–1857
  • Kranewitter, W. J., and Gimona, M.. 1999. N-terminally truncated Vav induces the formation of depolymerization-resistant actin filaments in NIH3T3 cells. FEBS Lett. 455:123–129
  • Lee, I. S., Liu, Y., Narazaki, M., Hibi, M., Kishimoto, T., and Taga, T.. 1997. Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6. FEBS Lett. 401:133–137
  • Lopez-Lago, M., Lee, H., Cruz, C., Movilla, N., and Bustelo, X. R.. 2000. Tyrosine phosphorylation mediates both activation and downmodulation of the biological activity of Vav. Mol. Cell. Biol. 20:1678–1691
  • Lu, W., and Mayer, B. J.. 1999. Mechanism of activation of Pak1 kinase by membrane localization. Oncogene 18:797–806
  • Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., Tan, I., Leung, T., and Lim, L.. 1998. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1:183–192
  • Marengere, L. E., Mirtsos, C., Kozieradzki, I., Veillette, A., Mak, T. W., and Penninger, J. M.. 1997. Proto-oncoprotein Vav interacts with c-Cbl in activated thymocytes and peripheral T cells. J. Immunol. 159:70–76
  • Michel, F., Grimaud, L., Tuosto, L., and Acuto, O.. 1998. Fyn and ZAP-70 are required for Vav phosphorylation in T cells stimulated by antigen-presenting cells. J. Biol. Chem. 273:31932–31938
  • Miranti, C. K., Leng, L., Maschberger, P., Brugge, J. S., and Shattil, S. J.. 1998. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr. Biol. 8:1289–1299
  • Montaner, S., Perona, R., Saniger, L., and Lacal, J. C.. 1999. Activation of serum response factor by RhoA is mediated by the nuclear factor-kappaB and C/EBP transcription factors. J. Biol. Chem. 274:8506–8515
  • Montaner, S., Perona, R., Saniger, L., and Lacal, J. C.. 1998. Multiple signaling pathways lead to the activation of the nuclear factor kappaB by the Rho family of GTPases. J. Biol. Chem. 273:12779–12785
  • Movilla, N., and Bustelo, X. R.. 1999. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol. Cell. Biol. 19:7870–7885
  • Nur-E-Kamal, M. S. A., Kamal, J. M., Qureshi, M. M., Iwashita, S., Montague, W., and Maruta, H.. 1999. The CDC42-specific inhibitor derived from ACK-1 blocks v-Ha-Ras-induced transformation. Oncogene 18:7787–7793
  • Olson, M. F., Pasteris, N. G., Gorski, J. L., and Hall, A.. 1996. Faciogenital dysplasia protein (FGD1) and Vav, two related proteins required for normal embryonic development, are upstream regulators of Rho GTPases. Curr. Biol. 6:1628–1633
  • Onodera, H., Motto, D. G., Koretzky, G. A., and Rothstein, D. M.. 1996. Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein-tyrosine phosphatase. J. Biol. Chem. 271:22225–22230
  • O'Rourke, L. M., Tooze, R., Turner, M., Sandoval, D. M., Carter, R. H., Tybulewicz, V. L., and Fearon, D. T.. 1998. CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 8:635–645
  • Pandey, A., Podtelejnikov, A. V., Blagoev, B., Bustelo, X. R., Mann, M., and Lodish, H. F.. 2000. Analysis of signaling complexes by mass spectrometry: identification of Vav-2 as a novel substrate of the epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA 97:179–184
  • Platanias, L. C., and Sweet, M. E.. 1994. Interferon alpha induces rapid tyrosine phosphorylation of the vav proto-oncogene product in hematopoietic cells. J. Biol. Chem. 269:3143–3146
  • Raab, M., da Silva, A. J., Findell, P. R., and Rudd, C. E.. 1997. Regulation of Vav-SLP-76 binding by ZAP-70 and its relevance to TCR zeta/CD3 induction of interleukin-2. Immunity 6:155–164
  • Ramos-Morales, F., Romero, F., Schweighoffer, F., Bismuth, G., Camonis, J., Tortolero, M., and Fischer, S.. 1995. The proline-rich region of Vav binds to Grb2 and Grb3–3. Oncogene 11:1665–1669
  • Ramos-Morales, F., Druker, B. J., and Fischer, S.. 1994. Vav binds to several SH2/SH3 containing proteins in activated lymphocytes. Oncogene 9:1917–1923
  • Romero, F., and Fischer, S.. 1996. Structure and function of Vav. Cell. Signal. 8:545–553
  • Sander, E. E., van Delft, S., ten Klooster, J. P., Reid, T., van der Kammen, R. A., Michiels, F., and Collard, J. G.. 1998. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143:1385–1398
  • Schuebel, K. E., Bustelo, X. R., Nielsen, D. A., Song, B. J., Barbacid, M., Goldman, D., and Lee, I. J.. 1996. Isolation and characterization of murine Vav2, a member of the vav family of proto-oncogenes. Oncogene 13:363–371
  • Schuebel, K. E., Movilla, N., Rosa, J. L., and Bustelo, X. R.. 1998. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J. 17:6608–6621
  • Song, J. S., Gomez, J., Stancato, L. F., and Rivera, J.. 1996. Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex. J. Biol. Chem. 271:26962–26970
  • Song, J. S., Haleem-Smith, H., Arudchandran, R., Gomez, J., Scott, P. M., Mill, J. F., Tan, T. H., and Rivera, J.. 1999. Tyrosine phosphorylation of Vav stimulates IL-6 production in mast cells by a Rac/c-Jun N terminal kinase-dependent pathway. J. Immunol. 163:802–810
  • Teramoto, H., Salem, P., Robbins, K. C., Bustelo, X. R., and Gutkind, J. S.. 1997. Tyrosine phosphorylation of the vav proto-oncogene product links FcRI to the Rac1-JNK pathway. J. Biol. Chem. 272:10751–10755
  • Trenkle, T., McClelland, M., Adlkofer, K., and Welsh, J.. 2000. Major transcript variants of VAV3, a new member of the VAV family of guanine nucleotide exchange factors. Gene 245:139–149
  • Turner, M., Mee, P. J., Walters, A. E., Quinn, M. E., Mellor, A. L., Zamoyska, R., and Tybulewicz, V. L.. 1997. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7:451–460
  • Uddin, S., Katzav, S., White, M. F., and Platanias, L. C.. 1995. Insulin-dependent tyrosine phosphorylation of the vav protooncogene product in cells of hematopoietic origin. J. Biol. Chem. 270:7712–7716
  • Uddin, S., Yetter, A., Katzav, S., Hofmann, C., White, M. F., and Platanias, L. C.. 1996. Insulin-like growth factor-1 induces rapid tyrosine phosphorylation of the vav proto-oncogene product. Exp. Hematol. 24:622–627
  • Van Aelst, L., and D'Souza-Schorey, C.. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322
  • Weng, W. K., Jarvis, L., and LeBien, T. W.. 1994. Signaling through CD19 activates Vav/mitogen-activated protein kinase pathway and induces formation of a CD19/Vav/phosphatidylinositol 3-kinase complex in human B cell precursors. J. Biol. Chem. 269:32514–32521
  • Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., Bonfield, J., Burton, J., Connell, M., Copsey, T., Cooper, J. et al. 1994. 2.2Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368:32–38
  • Wu, J., Katzav, S., and Weiss, A.. 1995. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol. Cell. Biol. 15:4337–4346
  • Ye, Z. S., and Baltimore, D.. 1994. Binding of Vav to Grb2 through dimerization of Src homology 3 domains. Proc. Natl. Acad. Sci. USA 91:12629–12633
  • Zhang, R., Tsai, F. Y., and Orkin, S. H.. 1994. Hematopoietic development of vav/mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 91:12755–12759

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.