32
Views
98
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Role of HSP90 in Salt Stress Tolerance via Stabilization and Regulation of Calcineurin

&
Pages 9262-9270 | Received 27 Apr 2000, Accepted 28 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Bohen, S. P., and Yamamoto, K. R.. 1993. Modulation of steroid-receptor signal transduction by heat shock proteins The biology of heat shock proteins and molecular chaperones. Morimoto, R. I., Tissiers, A., and Georgopoulos, C. 313–334 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Borkovich, K. A., Farrelly, F. W., Finkelstein, D. B., Taulien, J., and Lindquist, S.. 1989. HSP82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9:3919–3930
  • Brugge, J. S.. 1986. Interaction of the Rous sarcoma virus protein pp60src with the cellular proteins pp50 an pp90. Curr. Top. Microbiol. Immunol. 123:1–22
  • Cameron, A. M., Steiner, J. P., Roskams, A. J., Ali, S. M., Ronnett, G. V., and Snyder, S. H.. 1995. Calcineurin associated with the inositol 1,4,5-triphosphate receptor FKBP12 complex modulates Ca2+ flux. Cell 83:463–472
  • Cameron, A. M., Nucifora, F. C.Jr., Fung, E. T., Livingston, D. J., Aldape, R. A., Ross, C. A., and Snyder, S. H.. 1997. FKBP12 binds the inositol 1,4,5-triphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J. Biol. Chem. 272:27582–27588
  • Cheng, L., Hirst, K., and Piper, P. W.. 1992. Authentic temperature-regulation of a heat shock gene inserted into yeast on a high copy number vector. Influences of overexpression of HSP90 protein on high temperature growth and thermotolerance. Biochem. Biophys. Acta 1132:26–34
  • Cunningham, K. W., and Fink, G. R.. 1994. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J. Cell Biol. 124:351–363
  • Cyert, M. S., and Thorner, J.. 1992. Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol. Cell. Biol. 12:3460–3469
  • Cyert, M. S., Kunisaw, R., Kaim, D., and Thorner, J.. 1991. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc. Natl. Acad. Sci. USA 88:7376–7380
  • Freeman, B. C., and Morimoto, R. I.. 1996. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 15:2969–2979
  • Garciadeblas, B., Rubio, F., Quintero, F. J., Banuelos, M. A., Haro, R., and Rodriguez-Navarro, A.. 1993. Differential expression of two genes encoding isoform of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol. Gen. Genet. 236:363–368
  • Guarente, L.. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101:181–191
  • Hashimoto, Y., Perrino, B. A., and Soderling, T. R.. 1990. Identification of an autoinhibitory domain in calcineurin. J. Biol. Chem. 265:1924–1927
  • Hendrick, J. P., and Hartl, F. U.. 1993. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62:349–384
  • Ito, H., Fukuda, Y., Murata, K., and Kimura, A.. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168
  • Jakob, U., Lilie, H., Meyer, I., and Buchner, J.. 1995. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J. Biol. Chem. 270:7288–7294
  • Jayaraman, T., Brillantes, A. M., Timerman, A. P., Fleisher, S., Erdjument-Bromage, H., Tempst, P., and Marks, A. R.. 1992. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J. Biol. Chem. 267:9474–9477
  • Kimura, Y., Matsumoto, S., and Yahara, I.. 1994. Temperature-sensitive mutants of hsp82 of the budding yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 242:517–527
  • Kissinger, C. R., Parge, H. E., Knighton, D. R., Lewis, C. T., Pelletier, L. A., Tempczyk, A., Kalish, V. J., Tucker, K. D., Showalter, R. E., Moomaw, E. W. et al. 1995. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378:641–644
  • Klauck, T. M., Faux, M. C., Labudda, K., Langeberg, L. K., Jaken, S., and Scott, J. D.. 1996. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271:1589–1592
  • Klee, C. B., Draetta, G. F., and Hubbard, M. J.. 1988. Calcineurin. Adv. Enzymol. Relat. Areas Mol. Biol. 61:149–200
  • Kuno, T., Tanaka, H., Mukai, H., Chang, C. D., Hiraga, K., Miyakawa, T., and Tanaka, C.. 1991. cDNA cloning of a calcineurin B homolog in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 180:1159–1163
  • Lindquist, S., and Craig, E. A.. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631–677
  • Liu, Y., Ishii, S., Tokai, M., Tsutsumi, H., Ohki, O., Akada, R., Tanaka, K., Tsuchiya, E., Fukui, S., and Miyakawa, T.. 1991. The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding calmodulin-binding proteins homologous to the catalytic subunit of mammalian protein phosphatase 2B. Mol. Gen. Genet. 227:52–59
  • Manalan, A. S., and Klee, C. B.. 1983. Activation of calcineurin by limited proteolysis. Proc. Natl. Acad. Sci. USA 80:4291–4295
  • Matheos, D. P., Kingsbury, T. J., Ahsan, U. S., and Cunningham, K. W.. 1997. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 11:3445–3458
  • Mendoza, I., Rubio, F., Rodriguez-Navarro, A., and Pardo, J. M.. 1994. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269:8792–8796
  • Mertz, P., Yu, L., Sikkink, R., and Rusna, F.. 1997. Kinetic and spectroscopic analyses of mutants of a conserved histidine in the metallophosphatases calcineurin and lambda protein phosphatase. J. Biol. Chem. 272:21296–21302
  • Minami, Y., Kawasaki, H., Minami, M., Tanahashi, N., Tanaka, K., and Yahara, I.. 2000. A critical role for the proteasome activator PA28 in the Hsp90-dependent protein refolding. J. Biol. Chem. 275:9055–9061
  • Miyata, Y., and Yahara, I.. 1992. The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J. Biol. Chem. 267:7042–7047
  • Mumberg, D., Muller, R., and Funk, M.. 1995. Yeast vectors for the controlled expression of heterologous protein in different genetic backgrounds. Gene 156:119–122
  • Nakamura, T., Liu, Y., Hirata, D., Namba, H., Harada, S., Hirokawa, T., and Miyakawa, T.. 1993. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 12:4063–4071
  • Nathan, D. F., Vos, M. H., and Lindquist, S.. 1997. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc. Natl. Acad. Sci. USA. 94:12949–12956
  • Ohya, Y., Goebl, M., Goodman, L. E., Petersen-Bjorn, S., Friesen, J. D., Tamanoi, F., and Anraku, Y.. 1991. Yeast CAL1 is a structural and functional homologue to the DPR1(RAM) gene involved in ras processing. J. Biol. Chem. 266:12356–12360
  • Picard, D., Khursheed, B., Garabedian, M. J., Fortin, M. G., Lindquist, S., and Yamamoto, K. R.. 1990. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166–168
  • Pratt, W. B.. 1997. The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptor signaling via MAP kinase. Annu. Rev. Pharmacol. Toxicol. 37:297–326
  • Pratt, W. B., Sanchez, E. R., Bresnick, E. H., Meshinchi, S., Scherrer, L. C., Dalman, F. C., and Welsh, M. J.. 1989. Interaction of the glucocorticoid receptor with the Mr 90,000 heat shock protein: an evolving model of ligand-mediated receptor transformation and translocation. Cancer Res. 15:2222s–2229s
  • Rutherford, S. L., and Zuker, C. S.. 1994. Protein folding and the regulation of signaling pathways. Cell 79:1129–1132
  • Scherrer, L. C., Dalman, F. C., Massa, E., Meshinchi, S., and Pratt, W. B.. 1990. Structural and functional reconstitution of the glucocorticoid receptor-hsp90 complex. J. Biol. Chem. 265:21397–21400
  • Sherman, F., Fink, G. R., and Hicks, J. B.. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Someren, J. S., Faber, L. E., Klein, J. D., and Tumlin, J. A.. 1999. Heat shock proteins 70 and 90 increase calcineurin activity in vitro through calmodulin-dependent and independent mechanisms. Biochem. Biophys. Res. Commun. 260:619–625
  • Stathopoulos, A. M., and Cyert, M. S.. 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11:3432–3444
  • Stathopoulos-Gerontides, A., Guo, J. J., and Cyert, M. S.. 1999. Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev. 13:798–803
  • Stewart, A. A., Ingebristen, T. S., Manalan, A., Klee, C. B., and Cohen, P.. 1982. Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett. 137:80–84
  • Timerman, A. P., Ogunbumni, E., Freund, E., Wiederrecht, G., Marks, A. R., and Fleischer, S.. 1993. The calcium release channel of sarcoplasmic reticulum is modulated by FK-506 binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 268:22992–22999
  • Wiech, H., Buchner, J., Zimmermann, R., and Jakob, U.. 1992. Hsp90 chaperones protein folding in vitro. Nature 358:169–170
  • Xu, Y., and Lindquist, S.. 1993. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc. Natl. Acad. Sci. USA 90:7074–7078
  • Yahara, I., Iida, H., and Koyasu, S.. 1986. A heat shock-resistant variant of Chinese hamster cell line constitutively expressing heat shock protein of Mr 90,000 at high level. Cell Struct. Funct. 11:65–73
  • Yonehara, M., Minami, Y., Kawata, Y., Nagai, J., and Yahara, I.. 1996. Heat-induced chaperone activity of HSP90. J. Biol. Chem. 271:2641–2645

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.