20
Views
44
CrossRef citations to date
0
Altmetric
Cell Growth and Development

v-Src Generates a p53-Independent Apoptotic Signal

, &
Pages 9271-9280 | Received 05 May 2000, Accepted 25 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Adams, J. M., and Cory, S.. 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326
  • Aftab, D. T., Kwan, J., and Martin, G. S.. 1997. Ras-independent transformation by v-Src. Proc. Natl. Acad. Sci. USA 94:3028–3033
  • Anderson, S. M., Carroll, P. M., and Lee, F. D.. 1990. Abrogation of IL-3 dependent growth requires a functional v-src gene product: evidence for an autocrine growth cycle. Oncogene 5:317–325
  • Ashkenazi, A., and Dixit, V. M.. 1998. Death receptors: signaling and modulation. Science 281:1305–1308
  • Bates, S., Phillips, A. C., Clark, P. A., Stott, F., Peters, G., Ludwig, R. L., and Vousden, K. H.. 1998. p14ARF links the tumour suppressors RB and p53. Nature 395:124–125
  • Biscardi, J. S., Tice, D. A., and Parsons, S. J.. 1999. c-Src, receptor tyrosine kinases, and human cancer. Adv. Cancer Res. 76:61–119
  • Bonni, A., Brunet, A., West, A. E., Datta, S. R., Takasu, M. A., and Greenberg, M. E.. 1999. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362
  • Bromberg, J. F., Horvath, C. M., Besser, D., Lathem, W. W., Darnell, J. E.Jr.. 1998. Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18:2553–2558
  • Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C., Darnell, J. E.Jr.. 1999. Stat3 as an oncogene. Cell 98:295–303
  • Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E.. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868
  • Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X.. 1999. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15:269–290
  • Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S., and Reed, J. C.. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321
  • Catlett-Falcone, R., Landowski, T. H., Oshiro, M. M., Turkson, J., Levitzki, A., Savino, R., Ciliberto, G., Moscinski, L., Fernández-Luna, J. L., Nuñez, G., Dalton, W. S., and Jove, R.. 1999. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105–115
  • Chen, C., Edelstein, L. C., and Gélinas, C.. 2000. The Rel/NF-B family directly activates expression of the apoptosis inhibitor Bcl-xL. Mol. Cell. Biol. 20:2687–2695
  • Chen, G., Shu, J., and Stacey, D. W.. 1997. Oncogenic transformation potentiates apoptosis, S-phase arrest and stress-kinase activation by etoposide. Oncogene 15:1643–1651
  • Chu, Z. L., McKinsey, T. A., Liu, L., Gentry, J. J., Malim, M. H., and Ballard, D. W.. 1997. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc. Natl. Acad. Sci. USA 94:10057–10062
  • Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M. E.. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241
  • Debbas, M., and White, E.. 1993. Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B. Genes Dev. 7:546–554
  • Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., and Zeiher, A. M.. 1999. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605
  • Evan, G.. 1997. Cancer—a matter of life and cell death. Int. J. Cancer 71:709–711
  • Evan, G., and Littlewood, T.. 1998. A matter of life and cell death. Science 281:1317–1322
  • Evan, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., Waters, C. M., Penn, L. Z., and Hancock, D. C.. 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128
  • Fanidi, A., Harrington, E. A., and Evan, G. I.. 1992. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359:554–556
  • Fulton, D., Gratton, J. P., McCabe, T. J., Fontana, J., Fujio, Y., Walsh, K., Franke, T. F., Papapetropoulos, A., and Sessa, W. C.. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601
  • Gong, J. G., Costanzo, A., Yang, H. Q., Melino, G., Kaelin, W. G.Jr., Levrero, M., and Wang, J. Y.. 1999. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399:806–809
  • Green, D. R., and Reed, J. C.. 1998. Mitochondria and apoptosis. Science 281:1309–1312
  • Guo, M., and Hay, B. A.. 1999. Cell proliferation and apoptosis. Curr. Opin. Cell Biol. 11:745–752
  • Hermeking, H., and Eick, D.. 1994. Mediation of c-Myc-induced apoptosis by p53. Science 265:2091–2093
  • Hueber, A. O., and Evan, G. I.. 1998. Traps to catch unwary oncogenes. Trends Genet. 14:364–367
  • Hueber, A. O., Zörnig, M., Lyon, D., Suda, T., Nagata, S., and Evan, G. I.. 1997. Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis. Science 278:1305–1309
  • Irby, R. B., Mao, W., Coppola, D., Kang, J., Loubeau, J. M., Trudeau, W., Karl, R., Fujita, D. J., Jove, R., and Yeatman, T. J.. 1999. Activating SRC mutation in a subset of advanced human colon cancers. Nat. Genet. 21:187–190
  • Ishizaki, Y., Cheng, L., Mudge, A. W., and Raff, M. C.. 1995. Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol. Biol. Cell 6:1443–1458
  • Johnson, D., Agochiya, M., Samejima, K., Earnshaw, W., Frame, M., and Wyke, J.. 2000. Regulation of both apoptosis and cell survival by the v-Src oncoprotein. Cell Death Differ. 7:685–696
  • Johnson, D., Frame, M. C., and Wyke, J. A.. 1998. Expression of the v-Src oncoprotein in fibroblasts disrupts normal regulation of the CDK inhibitor p27 and inhibits quiescence. Oncogene 16:2017–2028
  • Joneson, T., and Bar-Sagi, D.. 1999. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell. Biol. 19:5892–5901
  • Kane, L. P., Shapiro, V. S., Stokoe, D., and Weiss, A.. 1999. Induction of NF-kappaB by the Akt/PKB kinase. Curr. Biol. 9:601–604
  • Karni, R., Jove, R., and Levitzki, A.. 1999. Inhibition of pp60c-Src reduces Bcl-XL expression and reverses the transformed phenotype of cells overexpressing EGF and HER-2 receptors. Oncogene 18:4654–4662
  • Kennedy, S. G., Wagner, A. J., Conzen, S. D., Jordán, J., Bellacosa, A., Tsichlis, P. N., and Hay, N.. 1997. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11:701–713
  • Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D.. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136
  • Kops, G. J., de Ruiter, N. D., De Vries-Smits, A. M., Powell, D. R., Bos, J. L., and Burgering, B. M.. 1999. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634
  • Kuwana, T., Smith, J. J., Muzio, M., Dixit, V., Newmeyer, D. D., and Kornbluth, S.. 1998. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem. 273:16589–16594
  • Li, H., Zhu, H., Xu, C. J., and Yuan, J.. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501
  • Liu, Z. G., Hsu, H., Goeddel, D. V., and Karin, M.. 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87:565–576
  • Lu, X., Fairbairn, D. W., Bradshaw, W. S., O'Neill, K. L., Ewert, D. L., and Simmons, D. L.. 1997. NSAID-induced apoptosis in Rous sarcoma virus-transformed chicken embryo fibroblasts is dependent on v-src and c-myc and is inhibited by bcl-2. Prostaglandins 54:549–568
  • Marte, B. M., and Downward, J.. 1997. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22:355–358
  • McCarthy, N. J., Whyte, M. K., Gilbert, C. S., and Evan, G. I.. 1997. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J. Cell Biol. 136:215–227
  • Naik, P., Karrim, J., and Hanahan, D.. 1996. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev. 10:2105–2116
  • Nielsen, M., Kaestel, C. G., Eriksen, K. W., Woetmann, A., Stokkedal, T., Kaltoft, K., Geisler, C., Röpke, C., and Odum, N.. 1999. Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 13:735–738
  • Odajima, J., Matsumura, I., Sonoyama, J., Daino, H., Kawasaki, A., Tanaka, H., Inohara, N., Kitamura, T., Downward, J., Nakajima, K., Hirano, T., and Kanakura, Y.. 2000. Full oncogenic activities of v-Src are mediated by multiple signaling pathways. Ras as an essential mediator for cell survival. J. Biol. Chem. 275:24096–24105
  • Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., and Donner, D. B.. 1999. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85
  • Pasteau, S., Loiseau, L., and Brun, G.. 1997. Proliferation of chicken neuroretina cells induced by v-src, in vitro, depends on activation of the E2F transcription factor. Oncogene 15:17–28
  • Pelengaris, S., Rudolph, B., and Littlewood, T.. 2000. Action of Myc in vivo—proliferation and apoptosis. Curr. Opin. Genet. Dev. 10:100–105
  • Penuel, E., and Martin, G. S.. 1999. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol. Biol. Cell 10:1693–1703
  • Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R., and Vousden, K. H.. 1999. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell 4:771–781
  • Rao, L., Debbas, M., Sabbatini, P., Hockenbery, D., Korsmeyer, S., and White, E.. 1992. The adenovirus E1A proteins induce apoptosis which is inhibited by the E1B and Bcl-2 proteins. Proc. Natl. Acad. Sci. USA 89:7742–7746
  • Romashkova, J. A., and Makarov, S. S.. 1999. NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401:86–90
  • Schlessinger, J.. 2000. New roles for Src kinases in control of cell survival and angiogenesis. Cell 100:293–296
  • Shaulian, E., Zauberman, A., Ginsberg, D., and Oren, M.. 1992. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12:5581–5592
  • Smith, M. R., DeGudicibus, S. J., and Stacey, D. W.. 1986. Requirement for c-ras proteins during viral oncogene transformation. Nature 320:540–543
  • Stacey, D. W., Roudebush, M., Day, R., Mosser, S. D., Gibbs, J. B., and Feig, L. A.. 1991. Dominant inhibitory Ras mutants demonstrate the requirement for Ras activity in the action of tyrosine kinase oncogenes. Oncogene 6:2297–2304
  • Thomas, S. M., and Brugge, J. S.. 1997. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13:513–609
  • Tsai, Y. T., Su, Y. H., Fang, S. S., Huang, T. N., Qiu, Y., Jou, Y. S., Shih, H. M., Kung, H. J., and Chen, R. H.. 2000. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol. Cell Biol. 20:2043–2054
  • Turkson, J., Bowman, T., Adnane, J., Zhang, Y., Djeu, J. Y., Sekharam, M., Frank, D. A., Holzman, L. B., Wu, J., Sebti, S., and Jove, R.. 1999. Requirement for Ras/Rac1-mediated p38 and c-Jun N-terminal kinase signaling in Stat3 transcriptional activity induced by the Src oncoprotein. Mol. Cell. Biol. 19:7519–7528
  • Turkson, J., Bowman, T., Garcia, R., Caldenhoven, E., De Groot, R. P., and Jove, R.. 1998. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol. Cell. Biol. 18:2545–2552
  • Wagner, A. J., Kokontis, J. M., and Hay, N.. 1994. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8:2817–2830
  • Wagner, A. J., Small, M. B., and Hay, N.. 1993. Myc-mediated apoptosis is blocked by ectopic expression of Bcl-2. Mol. Cell. Biol. 13:2432–2440
  • Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., Baldwin, A. S.Jr.. 1998. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683
  • Wang, H. G., Rapp, U. R., and Reed, J. C.. 1996. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87:629–638
  • Weissinger, E. M., Eissner, G., Grammer, C., Fackler, S., Haefner, B., Yoon, L. S., Lu, K. S., Bazarov, A., Sedivy, J. M., Mischak, H., and Kolch, W.. 1997. Inhibition of the Raf-1 kinase by cyclic AMP agonists causes apoptosis of v-abl-transformed cells. Mol. Cell. Biol. 17:3229–3241
  • Wyke, A. W., Cushley, W., and Wyke, J. A.. 1993. Mitogenesis by v-Src: a need for active oncoprotein both in leaving G0 and in completing G1 phases of the cell cycle. Cell Growth Differ. 4:671–678
  • Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X.. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132
  • Zindy, F., Eischen, C. M., Randle, D. H., Kamijo, T., Cleveland, J. L., Sherr, C. J., and Roussel, M. F.. 1998. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12:2424–2433
  • Zong, W. X., Edelstein, L. C., Chen, C., Bash, J., and Gélinas, C.. 1999. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev. 13:382–387
  • Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X.. 1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.