17
Views
30
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

The Yeast Inositol Polyphosphate 5-Phosphatases Inp52p and Inp53p Translocate to Actin Patches following Hyperosmotic Stress: Mechanism for Regulating Phosphatidylinositol 4,5-Bisphosphate at Plasma Membrane Invaginations

, , , , , , & show all
Pages 9376-9390 | Received 22 Jun 2000, Accepted 18 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Adams, A. E., and Pringle, J. R.. 1984. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J. Cell Biol. 98:934–945
  • Amatruda, J. F., and Cooper, J. A.. 1992. Purification, characterization, and immunofluorescence localization of Saccharomyces cerevisiae capping protein. J. Cell Biol. 117:1067–1076
  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. 1991. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y
  • Ayscough, K. R., Stryker, J., Pokala, N., Sanders, M., Crews, P., and Drubin, D. G.. 1997. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137:399–416
  • Chant, J., and Pringle, J. R.. 1995. Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J. Cell Biol. 129:751–765
  • Chowdhury, S., Smith, K. W., and Gustin, M. C.. 1992. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J. Cell Biol. 118:561–571
  • Chung, J. K., Sekiya, F., Kang, H. S., Lee, C., Han, J. S., Kim, S. R., Bae, Y. S., Morris, A. J., and Rhee, S. G.. 1997. Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 272:15980–15985
  • Cleves, A. E., Novick, P. J., and Bankaitis, V. A.. 1989. Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J. Cell Biol. 109:2939–2950
  • Connolly, T. M., Bross, T. E., and Majerus, P. W.. 1985. Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate. J. Biol. Chem. 260:7868–7874
  • Cooke, F. T., Dove, S. K., McEwen, R. K., Painter, G., Holmes, A. B., Hall, M. N., Michell, R. H., and Parker, P. J.. 1998. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr. Biol. 8:1219–1222
  • Corvera, S., D'Arrigo, A., and Stenmark, H.. 1999. Phosphoinositides in membrane traffic. Curr. Opin. Cell Biol. 11:460–465
  • De Camilli, P., Emr, S. D., McPherson, P. S., and Novick, P.. 1996. Phosphoinositides as regulators in membrane traffic. Science 271:1533–1539
  • Dove, S. K., Cooke, F. T., Douglas, M. R., Sayers, L. G., Parker, P. J., and Michell, R. H.. 1997. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390:187–192
  • Downes, C. P., Mussat, M. C., and Michell, R. H.. 1982. The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem. J. 203:169–177
  • Gabriel, M., and Kopecka, M.. 1995. Disruption of the actin cytoskeleton in budding yeast results in formation of an aberrant cell wall. Microbiology 141:891–899
  • Guo, S., Stolz, L. E., Lemrow, S. M., and York, J. D.. 1999. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274:12990–12995
  • Haarer, B. K., Lillie, S. H., Adams, A. E., Magdolen, V., Bandlow, W., and Brown, S. S.. 1990. Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J. Cell Biol. 110:105–114
  • Hill, K. L., Catlett, N. L., and Weisman, L. S.. 1996. Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J. Cell Biol. 135:1535–1549
  • Iida, K., Moriyama, K., Matsumoto, S., Kawasaki, H., Nishida, E., and Yahara, I.. 1993. Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-M(r) actin-binding and depolymerizing protein. Gene 124:115–120
  • Jackson, S. P., Schoenwaelder, S. M., Matzaris, M., Brown, S., and Mitchell, C. A.. 1995. Phosphatidylinositol 3,4,5-trisphosphate is a substrate for the 75 kDa inositol polyphosphate 5-phosphatase and a novel 5-phosphatase which forms a complex with the p85/p110 form of phosphoinositide 3-kinase. EMBO J. 14:4490–4500
  • Johnston, G. C., Prendergast, J. A., and Singer, R. A.. 1991. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J. Cell Biol. 113:539–551
  • Jones, J. S., and Prakash, L.. 1990. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6:363–336
  • Karpova, T. S., McNally, J. G., Moltz, S. L., and Cooper, J. A.. 1998. Assembly and function of the actin cytoskeleton of yeast: relationships between cables and patches. J. Cell Biol. 142:1501–1517
  • Kilmartin, J. V., and Adams, A. E.. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922–933
  • Kopecka, M., and Gabriel, M.. 1995. Actin cortical cytoskeleton and cell wall synthesis in regenerating protoplasts of the Saccharomyces cerevisiae actin mutant DBY 1693. Microbiology 141:1289–1299
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  • Longtine, M. S., McKenzie, A.III, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961
  • Majerus, P. W.. 1996. Inositols do it all. Genes Dev. 10:1051–1053
  • Matzaris, M., Jackson, S. P., Laxminarayan, K. M., Speed, C. J., and Mitchell, C. A.. 1994. Identification and characterization of the phosphatidylinositol-(4, 5)-bisphosphate 5-phosphatase in human platelets. J. Biol. Chem. 269:3397–3402
  • Mitchell, C. A., Brown, S., Campbell, J. K., Munday, A. D., and Speed, C. J.. 1996. Regulation of second messengers by the inositol polyphosphate 5-phosphatases. Biochem. Soc. Trans. 24:994–1000
  • Mitchell, C. A., Connolly, T. M., and Majerus, P. W.. 1989. Identification and isolation of a 75-kDa inositol polyphosphate-5-phosphatase from human platelets. J. Biol. Chem. 264:8873–8877
  • Mulholland, J., Konopka, J., Singer-Kruger, B., Zerial, M., and Botstein, D.. 1999. Visualization of receptor-mediated endocytosis in yeast. Mol. Biol. Cell 10:799–817
  • Mulholland, J., Preuss, D., Moon, A., Wong, A., Drubin, D., and Botstein, D.. 1994. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125:381–391
  • Nemoto, Y., and De Camilli, P.. 1999. Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J. 18:2991–3006
  • Novick, P., Osmond, B. C., and Botstein, D.. 1989. Suppressors of yeast actin mutations. Genetics 121:659–674
  • Patton, J. L., and Lester, R. L.. 1992. Phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, and the phosphoinositol sphingolipids are found in the plasma membrane and stimulate the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 292:70–76
  • Penman, J., and Penman, S.. 1997. Resinless section electron microscopy reveals the yeast cytoskeleton. Proc. Natl. Acad. Sci. USA 94:3732–3735
  • Pruyne, D., and Bretscher, A.. 2000. Polarization of cell growth in yeast. J. Cell Sci. 113:571–585
  • Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., Sheetz, M. P., and Meyer, T.. 2000. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Singer-Kruger, B., Nemoto, Y., Daniell, L., Ferro-Novick, S., and De Camilli, P.. 1998. Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J. Cell Sci. 111:3347–3356
  • Srinivasan, S., Seaman, M., Nemoto, Y., Daniell, L., Suchy, S. F., Emr, S., De Camilli, P., and Nussbaum, R.. 1997. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur. J. Cell Biol. 74:350–360
  • Stolz, L. E., Huynh, C. V., Thorner, J., and York, J. D.. 1998. Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics 148:1715–1729
  • Stolz, L. E., Kuo, W. J., Longchamps, J., Sekhon, M. K., and York, J. D.. 1998. INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J. Biol. Chem. 273:11852–11861
  • Toker, A.. 1998. The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Cell Biol. 10:254–261
  • Towbin, H., Staehelin, T., and Gordon, J.. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354
  • Waddle, J. A., Karpova, T. S., Waterston, R. H., and Cooper, J. A.. 1996. Movement of cortical actin patches in yeast. J. Cell Biol. 132:861–870
  • Whisstock, J. C., Romero S., Gurung R., Nandurkar H., Ooms L., Bottomley S. P., and Mitchell C. A.. The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis. J. Biol. Chem., in press.
  • Whitters, E. A., Cleves, A. E., McGee, T. P., Skinner, H. B., and Bankaitis, V. A.. 1993. SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J. Cell Biol. 122:79–94
  • Yamamoto, A., DeWald, D. B., Boronenkov, I. V., Anderson, R. A., Emr, S. D., and Koshland, D.. 1995. Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol. Biol. Cell 6:525–539

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.