8
Views
44
CrossRef citations to date
0
Altmetric
Gene Expression

The N-Terminal Domain That Distinguishes Yeast from Bacterial RNase III Contains a Dimerization Signal Required for Efficient Double-Stranded RNA Cleavage

, &
Pages 1104-1115 | Received 01 Sep 1999, Accepted 17 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Abou Elela, S., Ares, M.Jr.. 1998. Depletion of yeast RNase III blocks correct U2 3′ end formation and results in polyadenylated but functional U2 snRNA. EMBO J. 17:3738–3746
  • Abou Elela, S., Igel, H., Ares, M.Jr.. 1996. RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell 85:115–124
  • Bycroft, M., Grunert, S., Murzin, A. G., Proctor, M., and St Johnston, D.. 1995. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 14:3563–3571 (Erratum, 14:4385.)
  • Chanfreau, G., Elela, S. A., Ares, M.Jr., and Guthrie, C.. 1997. Alternative 3′-end processing of U5 snRNA by RNase III. Genes Dev. 11:2741–2751
  • Chanfreau, G., Legrain, P., and Jacquier, A.. 1998. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J. Mol. Biol. 284:975–988
  • Chanfreau, G., Rotondo, G., Legrain, P., and Jacquier, A.. 1998. Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J. 17:3726–3737
  • Court, D.. 1993. RNA processing and degradation by RNase III. Academic Press, Inc., New York, N.Y
  • Dasgupta, S., Fernandez, L., Kameyama, L., Inada, T., Nakamura, Y., Pappas, A., and Court, D. L.. 1998. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III—the effect of dsRNA binding on gene expression. Mol. Microbiol. 28:629–640 (Erratum, 30:679, 1998.)
  • Dunn, J. J.. 1976. RNase III cleavage of single-stranded RNA. Effect of ionic strength on the fidelity of cleavage. J. Biol. Chem. 251:3807–3814
  • Gitelman, D. R., and Apirion, D.. 1980. The synthesis of some proteins is affected in RNA processing mutants of Escherichia coli. Biochem. Biophys. Res. Commun. 96:1063–1070
  • Guthrie, C., and Fink, G. R.. 1991. Guide to yeast genetics and molecular biology. Academic Press, Inc., San Diego, Calif
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Higgins, D. G., Thompson, J. D., and Gibson, T. J.. 1996. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266:383–402
  • Iino, Y., Sugimoto, A., and Yamamoto, M.. 1991. S. pombe pac1+, whose overexpression inhibits sexual development, encodes a ribonuclease III-like RNase. EMBO J. 10:221–226
  • James, P., Halladay, J., and Craig, E. A.. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
  • Janknecht, R., de Martynoff, G., Lou, J., Hipskind, R. A., Nordheim, A., and Stunnenberg, H. G.. 1991. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc. Natl. Acad. Sci. USA 88:8972–8976
  • Kharrat, A., Macias, M. J., Gibson, T. J., Nilges, M., and Pastore, A.. 1995. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J. 14:3572–3584
  • Kufel, J., Dichtl, B., and Tollervey, D.. 1999. Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3′ ETS but not the 5′ ETS. RNA 5:909–917
  • Labbé, S., and Thiele, D. J.. 1999. Copper ion inducible and repressible promoter systems in yeast. Methods Enzymol. 306:145–153
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  • Li, H., and Nicholson, A. W.. 1996. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. EMBO J. 15:1421–1433
  • Li, H. L., Chelladurai, B. S., Zhang, K., and Nicholson, A. W.. 1993. Ribonuclease III cleavage of a bacteriophage T7 processing signal. Divalent cation specificity, and specific anion effects. Nucleic Acids Res. 21:1919–1925
  • March, P. E., and Gonzalez, M. A.. 1990. Characterization of the biochemical properties of recombinant ribonuclease III. Nucleic Acids Res. 18:3293–3298
  • Martin, M. E., and Berk, A. J.. 1998. Adenovirus E1B 55K represses p53 activation in vitro. J. Virol. 72:3146–3154
  • Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R.. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056
  • Miller, J. H.. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Nanduri, S., Carpick, B. W., Yang, Y., Williams, B. R., and Qin, J.. 1998. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J 17:5458–5465
  • Nicholson, A. W.. 1996. Structure, reactivity, and biology of double-stranded RNA. Prog. Nucleic Acid Res. Mol. Biol. 52:1–65
  • Patel, R. C., and Sen, G. C.. 1998. Requirement of PKR dimerization mediated by specific hydrophobic residues for its activation by double-stranded RNA and its antigrowth effects in yeast. Mol. Cell. Biol. 18:7009–7019
  • Prista, C., Almagro, A., Loureiro-Dias, M. C., and Ramos, J.. 1997. Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl. Environ. Microbiol. 63:4005–4009
  • Qu, L. H., Henras, A., Lu, Y. J., Zhou, H., Zhou, W. X., Zhu, Y. Q., Zhao, J., Henry, Y., Caizergues-Ferrer, M., and Bachellerie, J. P.. 1999. Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol. Cell. Biol. 19:1144–1158
  • Reynolds, A., and Lundblad, V.. Yeast vectors and assays for expression of cloned genes 2: John Wiley & Sons, Inc., New York, N.Y
  • Robertson, H. D.. 1982. 1998. Escherichia coli ribonuclease III cleavage sites. Cell 30:669–672
  • Rose, M. D., Winston, F., and Hieter, P.. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor, New York, N.Y
  • Rotondo, G., and Frendewey, D.. 1996. Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. Nucleic Acids Res. 24:2377–2386
  • Rotondo, G., Gillespie, M., and Frendewey, D.. 1995. Rescue of the fission yeast snRNA synthesis mutant snm1 by overexpression of the double-strand-specific Pac1 ribonuclease. Mol. Gen. Genet. 247:698–708
  • Rotondo, G., Huang, J. Y., and Frendewey, D.. 1997. Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharmyces pombe. RNA 3:1182–1193
  • Ryter, J. M., and Schultz, S. C.. 1998. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 17:7505–7513
  • Sambrook, J., Fritsh, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York, N.Y
  • Seipelt, R. L., Zheng, B., Asuru, A., and Rymond, B. C.. 1989. 1999. U1 snRNA is cleaved by RNase III and processed through an Sm site-dependent pathway. Nucleic Acids Res. 27:587–595
  • Xu, H. P., Riggs, M., Rodgers, L., and Wigler, M.. 1990. A gene from S. pombe with homology to E. coli RNAse III blocks conjugation and sporulation when overexpressed in wild type cells. Nucleic Acids Res. 18: 5304
  • Zeng, X., Zhu, H., Lashuel, H. A., and Hu, J. C.. 1997. Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci. 6:2218–2226
  • Zhou, D., Frendewey, D., and Lobo Ruppert, S. M.. 1999. Pac1p, an RNase III homolog, is required for formation of the 3′ end of U2 snRNA in Schizosaccharomyces pombe. RNA 5:1083–1098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.