82
Views
174
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Regulatory Interactions between the Reg1-Glc7 Protein Phosphatase and the Snf1 Protein Kinase

, , &
Pages 1321-1328 | Received 05 Oct 1999, Accepted 19 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Alms, G. R., Sanz, P., Carlson, M., and Haystead, T. A.. 1999. Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase PII in Saccharomyces cerevisiae: characterizing the effects of a phosphatase subunit on the yeast proteome. EMBO J. 18:4157–4168
  • Berben, G., Dumont, J., Gilliquet, V., Bolle, P. A., and Hilger, F.. 1991. The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7:475–477
  • Cannon, J., Pringle, J. R., Fiechter, A., and Khalil, M.. 1994. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136:485–503
  • Carlson, M.. 1999. Glucose repression in yeast. Curr. Opin. Microbiol. 2:202–207
  • Celenza, J. L., and Carlson, M.. 1989. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034–5044
  • Dale, S., Wilson, W., Edelman, A., and Hardie, D. G.. 1995. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361:191–195
  • Dombek, K. M., Voronkova, V., Raney, A., and Young, E. T.. 1999. Functional analysis of the yeast Glc7-binding protein Reg1 identifies a PP1-binding motif as essential for repression of ADH2 expression. Mol. Cell. Biol. 19:6029–6040
  • Egloff, M. P., Johnson, D. F., Moorhead, G., Cohen, P. T. W., Cohen, P., and Barford, D.. 1997. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16:1876–1887
  • Entian, K.-D.. 1980. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol. Gen. Genet. 178:633–637
  • Entian, K.-D., and Mecke, D.. 1982. Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae. J. Biol. Chem. 257:870–874
  • Estruch, F., Treitel, M. A., Yang, X., and Carlson, M.. 1992. N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics 132:639–650
  • Feng, Z. H., Wilson, S. E., Peng, Z. Y., Schlender, K. K., Reimann, E. M., and Trumbly, R. J.. 1991. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266:23796–23801
  • Fields, S., and Song, O.. 1989. A novel genetic system to detect protein-protein interactions. Nature (London) 340:245–246
  • Francisco, L., Wang, W., and Chan, C. S. M.. 1994. Type 1 protein phosphatase acts in opposition to Ipl1 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol. 14:4731–4740
  • Frederick, D. L., and Tatchell, K.. 1996. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol. Cell. Biol. 16:2922–2931
  • Gancedo, J. M.. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334–361
  • Golemis, E. A., Serbriiskii, I., Gyuris, J., and Brent, R.. Interaction trap/two-hybrid system to identify interacting proteins. Current protocols in molecular biology Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. 3, 20.1: John Wiley & Sons, New York, N.Y
  • Hardie, D. G., Carling, D., and Carlson, M.. 1998. 1997. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67:821–855
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Herrero, P., Martinez-Campa, C., and Moreno, F.. 1998. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett. 434:71–76
  • Hisamoto, N., Frederick, D. L., Sugimoto, K., Tatchell, K., and Matsumoto, K.. 1995. The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:3767–3776
  • Hisamoto, N., Sugimoto, K., and Matsumoto, K.. 1994. The Glc7 type 1 protein phosphatase of Saccharomyces cerevisiae is required for cell cycle progression in G2/M. Mol. Cell. Biol. 14:3158–3165
  • Huang, D., Chun, K. T., Goebl, M. G., and Roach, P. J.. 1996. Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae. Genetics 143:119–127
  • Jiang, R., and Carlson, M.. 1996. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 10:3105–3115
  • Jiang, R., and Carlson, M.. 1997. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:2099–2106
  • Johnston, M.. 1999. Feasting, fasting and fermenting. Trends Genet. 15:29–33
  • Kriegel, T. M., Rush, J., Vojtek, A. B., Clifton, D., and Fraenkel, D. G.. 1994. In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae. Biochemistry 33:148–152
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
  • Legrain, P., Dokhelar, M.-C., and Transy, C.. 1994. Detection of protein-protein interactions using different vectors in the two-hybrid system. Nucleic Acids Res. 22:3241–3242
  • Ludin, K., Jiang, R., and Carlson, M.. 1998. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95:6245–6250
  • Ma, H., Bloom, L. M., Walsh, C. T., and Botstein, D.. 1989. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5643–5649
  • Ma, H., and Botstein, D.. 1986. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol. Cell. Biol. 6:4046–4052
  • MacKelvie, S. H., Andrews, P. D., and Stark, M. J. R.. 1995. The Saccharomyces cerevisiae gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase. Mol. Cell. Biol. 15:3777–3785
  • Matsumoto, K., Yoshimatsu, T., and Oshima, Y.. 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. J. Bacteriol. 153:1405–1414
  • Neigeborn, L., and Carlson, M.. 1987. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115:247–253
  • Niederacher, D., and Entian, K. D.. 1991. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur. J. Biochem. 200:311–319
  • Ozcan, S., Johnston. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15:1564–1572
  • Ramaswamy, N. T., Li, L., Khalil, M., and Cannon, J. F.. 1998. Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics 149:57–72
  • Randez-Gil, F., Herrero, P., Sanz, P., Prieto, J. A., and Moreno, F.. 1998. Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae. FEBS Lett. 425:475–478
  • Randez-Gil, F., Sanz, P., Entian, K.-D., and Prieto, J. A.. 1998. Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol. Cell. Biol. 18:2940–2948
  • Rose, M. D., Winston, F., and Hieter, P.. 1990. Methods in yeast genetics, a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Rothstein, R. J.. 1983. One-step gene disruption in yeast. Methods Enzymol. 101C:202–210
  • Ruden, D. M., Ma, J., Li, Y., Wood, K., and Ptashne, M.. 1991. Generating yeast transcriptional activators containing no yeast protein sequences. Nature (London) 350:250–252
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Song, W., and Carlson, M.. 1998. Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J. 17:5757–5765
  • Stark, M. J.. 1996. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast 12:1647–1675
  • Treitel, M. A., Kuchin, S., and Carlson, M.. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273–6280
  • Tu, J., and Carlson, M.. 1994. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6789–6796
  • Tu, J., and Carlson, M.. 1995. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14:5939–5946
  • Tu, J., Song, W., and Carlson, M.. 1996. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4199–4206
  • Tung, K.-S., Norbeck, L. L., Nolan, S. L., Atkinson, N. S., and Hopper, A. K.. 1992. SRN1, a yeast gene involved in RNA processing, is identical to HEX2/REG1, a negative regulator in glucose repression. Mol. Cell. Biol. 12:2673–2680
  • Vojtek, A. B., and Fraenkel, D. G.. 1990. Phosphorylation of yeast hexokinases. Eur. J. Biochem. 190:371–375
  • Vojtek, A. B., Hollenberg, S. M., and Cooper, J. A.. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214
  • Wek, R. C., Cannon, J. F., Dever, T. E., and Hinnebusch, A. G.. 1992. Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2α kinase GCN2. Mol. Cell. Biol. 12:5700–5710
  • Wilson, W. A., Hawley, S. A., and Hardie, D. G.. 1996. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1426–1434
  • Woods, A., Munday, M. R., Scott, J., Yang, X., Carlson, M., and Carling, D.. 1994. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269:19509–19516
  • Zhang, S., Guha, S., and Volkert, F. C.. 1995. The Saccharomyces SHP1 gene, which encodes a regulator of phosphoprotein phosphatase 1 with differential effects on glycogen metabolism, meiotic differentiation and mitotic cell cycle progression. Mol. Cell. Biol. 15:2037–2050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.