37
Views
82
CrossRef citations to date
0
Altmetric
Gene Expression

The SCFHOS/β-TRCP-ROC1 E3 Ubiquitin Ligase Utilizes Two Distinct Domains within CUL1 for Substrate Targeting and Ubiquitin Ligation

, , , , , & show all
Pages 1382-1393 | Received 06 Aug 1999, Accepted 15 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R.. 1997. β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16:3797–3804
  • Banerjee, A., Gregori, L., Xu, Y., and Chau, V.. 1993. The bacterially expressed yeast cdc34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein. J. Biol. Chem. 268:5668–5675
  • Beg, A. A., Ruben, S. M., Scheinman, R. I., Haskill, S., Rosen, C. A., Baldwin, A. S.Jr.. 1992. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6:1899–1913
  • Beg, A. A., Finco, T. S., Nantermet, P. V., and Baldwin, A. S. J.. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκB: a mechanism for NF-κB activation. Mol. Cell. Biol. 13:3301–3310
  • Brown, K., Gerstberger, S., Carlson, L., Fransozo, G., and Siebenlist, U.. 1995. Control of IκB proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488
  • Chen, Z., and Pickart, C. M.. 1990. A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain via K48 of ubiquitin. J. Biol. Chem. 265:21835–21842
  • Chen, Z., Hagler, J., Palombella, V. J., Melandri, F., Scherer, D., Ballard, D., and Maniatis, T.. 1995. Signal-induced site-specific phosphorylation targets IκB to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597
  • Chen, Z. J., Parent, L., and Maniatis, T.. 1996. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862
  • DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., and Karin, M.. 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554
  • Duan, H., Wang, Y., Aviram, M., Swaroop, M., Loo, J. A., Bian, J., Tian, Y., Mueller, T., Bisgaier, C. L., and Sun, Y.. 1999. SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents. Mol. Cell Biol. 19:3145–3155
  • Feldman, R. M. R., Correll, C. C., Kaplan, K. B., and Deshaies, R. J.. 1997. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230
  • Fuchs, S. Y., Chen, A., Xiong, Y., Pan, Z.-Q., and Ronai, Z.. 1999. HOS, a human homologue of Slimb, forms an SCF complex with Skp1 and Cullin 1 and targets the phosphorylation-dependent degradation of IκB and β-catenin. Oncogene 18:2039–2046
  • Gonen, H., Bercovich, B., Orian, A., Carrano, A., Takizawa, C., Yamanaka, K., Pagano, M., Iwai, K., and Ciechanover, A.. 1999. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha. J. Biol. Chem. 274:14823–14830
  • Halderman, M. T., Finley, D., and Pickart, C. M.. 1995. Dynamics of ubiquitin conjugation during erythroid differentiation in vitro. J. Biol. Chem. 270:9507–9516
  • Hatakeyama, S., Kitagawa, M., Nakayama, K., Shirane, M., Matsumoto, M., Hattori, K., Higashi, H., Nakano, H., Okumura, K., Onoe, K., Good, R. A., and Nakayama, K.. 1999. Ubiquitin-dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc. Natl. Acad. Sci. USA 96:3859–3863
  • Hershko, A., Heller, H., Elias, S., and Ciechanover, A.. 1983. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258:8206–8214
  • Hershko, A., and Ciechanover, A.. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–479
  • Joazeiro, C. A., Wing, S. S., Huang, H., Leverson, J. D., Hunter, T., and Liu, Y. C.. 1999. The Tyrosine kinase negative regulator c-Cbl as a RING-Type, E2-Dependent ubiquitin-protein ligase. Science 286:309–312
  • Kamura, T., Koepp, D. M., Conrad, M. N., Skowyra, D., Moreland, R. J., Iliopoulos, O., Lane, W. S., Kaelin, W. G.Jr., Elledge, S. J., Conaway, R. C., Harper, J. W., and Conaway, J. W.. 1999. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284:657–661
  • Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W., and Hieter, P.. 1999. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4:21–33
  • Laney, J. D., and Hochstrasser, M.. 1999. Substrate targeting in the ubiquitin system. Cell 97:427–430
  • Latres, E, Chiaur, D. S., and Pagano, M.. 1999. The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18:849–854
  • Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M., and Krek, W.. 1999. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13:1822–1833
  • Lonergan, K. M., Iliopoulos, O., Ohh, M., Kamura, T., Conaway, R. C., Conaway, J. W., Kaelin, W. G.Jr.. 1998. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 18:732–741
  • Lorick, K. L., Jensen, J. P., Fang, S., Ong, A. M., Hatakeyama, S., and Weissman, A. M.. 1999. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96:11364–11369
  • Maniatis, T.. 1999. A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 13:505–510
  • Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., and Ratcliffe, P. J.. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275
  • Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbosa, M., and Mann, M.. 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866
  • Michel, J., and Xiong, Y.. 1998. Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 9:439–445
  • Ohta, T., Michel, J. J., Schottelius, A. J., and Xiong, Y.. 1999. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3:535–541
  • Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T.. 1994. The ubiquitin proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785
  • Patton, E. E., Willems, A., Sa, D., Kuras, L., Thomas, D., Craig, K. L., and Tyers, M.. 1998. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12:692–705
  • Pause, A., Lee, S., Worrell, R. A., Chen, D. Y., Burgess, W. H., Linehan, W. M., and Klausner, R. D.. 1997. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. USA 94:2156–2161
  • Pause, A., Peterson, B., Schaffar, G., Stearman, R., and Klausner, R. D.. 1999. Studying interactions of four proteins in the yeast two-hybrid system: structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc. Natl. Acad. Sci. USA 96:9533–9538
  • Peters, J.-M., King, R. W., and Deshaies, R.. 1998. Cell cycle control by ubiquitin-dependent proteolysis Ubiquitin and the biology of the cell. Peters, J.-M., Harris, J. R., and Finley, D. 345–387 Plenum Press, New York, N.Y
  • Regnier, C. H., Song, H. Y., Gao, X., Goeddel, D. V., Cao, Z., and Rothe, M.. 1997. Identification and characterization of an IκB kinase. Cell 90:373–383
  • Scherer, D. C., Brockman, J. A., Chen, Z., Maniatis, T., and Ballard, D. W.. 1995. Signal-induced degradation of IκB requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263
  • Seol, J. H., Feldman, R. M., Zachariae, W., Shevchenko, A., Correll, C. C., Lyapina, S., Chi, Y., Galova, M., Claypool, J., Sandmeyer, S., Nasmyth, K., and Deshaies, R. J.. 1999. Cdc53/cullin and the essential hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module hat activates the E2 enzyme cdc34. Genes Dev. 13:1614–1626
  • Skowyra, D., Craig, K., Tyers, M., Elledge, S. J., and Harper, J. W.. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219
  • Skowyra, D., Koepp, D. M., Kamura, T., Conrad, M. N., Conaway, R. C., Conaway, J. W., Elledge, S. J., and Harper, J. W.. 1999. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and rbx1. Science 284:662–665
  • Spence, J., Sadis, S., Haas, A. L., and Finley, D.. 1995. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15:1265–1273
  • Spencer, E., Jiang, J., and Chen, Z. J.. 1999. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13:284–294
  • Stebbins, C. E., Kaelin, W. G.Jr., and Pavletich, N. P.. 1999. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461
  • Tan, P., Fuchs, S. Y., Chen, A., Wu, K., Gomez, C., Ronai, Z., and Pan, Z. Q.. 1999. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IκBα. Mol. Cell 3:527–533
  • Van Nocker, S., and Vierstra, R. D.. 1993. Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. J. Biol. Chem. 268:24766–24773
  • Vuillard, L., Nicholson, J., and Hay, R. T.. 1999. A complex containing betaTrCP recruits Cdc34 to catalyze ubiquitination of IkappaBalpha. FEBS Lett. 455:311–314
  • Winston, J. T., Strack, P., Beer-Romero, P., Chu, C. Y., Elledge, S. J., and Harper, J. W.. 1999. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13:270–283
  • Woronicz, J. D., Gao, X., Cao, Z., Rothe, M., and Goeddel, D. V.. 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278:866–869
  • Yaron, A., Gonen, H., Alkalay, I., Hatzubai, A., Jung, S., Beyth, S., Mercurio, F., Manning, A. M., Ciechanover, A., and Ben-Neriah, Y.. 1997. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J. 16:6486–6494
  • Yaron, A., Hatzubal, A., Davis, M., Lavon, I., Amit, S., Manning, A. M., Andersen, J. S., Mann, M., Mercurio, F., and Ben-Neriah, Y.. 1998. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396:590–594
  • Yu, H., Peters, J.-M., King, R. W., Page, A. M., Hieter, P., and Kirschner, M. W.. 1998. Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science 279:1219–1222
  • Zachariae, W., Shevchenko, A., Andrews, P. D., Ciosk, R., Galova, M., Stark, M. J. R., Mann, M., and Nasmyth, K.. 1998. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279:1216–1219
  • Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M., and Karin, M.. 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252
  • Zhang, H., Kobayashi, R., Galaktionov, K., and Beach, D.. 1995. p19/Skp1 and p45/Skp2 are essential elements of the Cyclin A-Cdk2 S phase kinase. Cell 82:915–925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.