12
Views
83
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Mixed-Lineage Kinase 3 Delivers CD3/CD28-Derived Signals into the IκB Kinase Complex

, , , , , , , & show all
Pages 2556-2568 | Received 07 Sep 1999, Accepted 07 Dec 1999, Published online: 27 Mar 2023

REFERENCES

  • Baichwal, V. R., and Baeuerle, P. A.. 1997. Activate NF-κB or die? Curr. Biol. 7:R94–R96
  • Baldwin, A. S.Jr. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683
  • Bender, K., Göttlicher, M., Whiteside, S., Rahmsdorf, H. J., and Herrlich, P.. 1998. Sequential DNA damage-independent and -dependent activation of NF-κB by UV. EMBO J. 17:5170–5181
  • Beraud, C., Henzel, W. J., and Baeuerle, P. A.. 1999. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-κB activation. Proc. Natl. Acad. Sci. USA 96:429–434
  • Cantrell, D.. 1998. Lymphocyte signalling: a coordinating role for Vav? Curr. Biol. 8:R535–R538
  • Chen, Z. J., Parent, L., and Maniatis, T.. 1996. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862
  • Cohen, L., Henzel, W. J., and Baeuerle, P. A.. 1998. IKAP is a scaffold protein of the IκB kinase complex. Nature 395:292–296
  • Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., Miki, T., and Gutkind, J. S.. 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146
  • Costello, P. S., Walters, A. E., Mee, P. J., Turner, M., Reynolds, L. F., Prisco, A., Sarner, N., Zamoyska, R., and Tybulewicz, V. L. J.. 1999. The Rho family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK and NF-κB pathways. Proc. Natl. Acad. Sci. USA 96:3035–3040
  • Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S., and Bustelo, X. R.. 1997. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385:169–172
  • De Bosscher, K., Schmitz, M. L., Plaisance, S., Vanden Berghe, W., Fiers, W., and Haegeman, G.. 1997. Glucocorticoid-mediated repression of NF-κB dependent transcription involves direct interference with transactivation. Proc. Natl. Acad. Sci. USA 94:13504–13509
  • Delhase, M., Hayakawa, M., Chen, Y., and Karin, M.. 1999. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284:309–313
  • DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., and Karin, M.. 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554
  • Dorow, D. S., Devereux, L., Dietzsch, E., and DeKretser, T.. 1993. Identification of a new family of human epithelial protein kinases containing two leucine/isoleucine-zipper domains. Eur. J. Biochem. 213:701–710
  • Dorow, D. S., Devereux, L., Tu, G. F., Price, G., Nicholl, J. K., Sutherland, G. R., and Simpson, R. J.. 1995. Complete nucleotide sequence, expression, and chromosomal localisation of human mixed-lineage kinase 2. Eur. J. Biochem. 234:492–500
  • Ezoe, K., Lee, S. T., Strunk, K. M., and Spritz, R. A.. 1994. PTK1, a novel protein kinase required for proliferation of human melanocytes. Oncogene 9:935–938
  • Gallo, K. A., Mark, M. R., Scadden, D. T., Wang, Z., Gu, Q., and Godowski, P. J.. 1994. Identification and characterization of SPRK, a novel src-homology 3 domain-containing proline-rich kinase with serine/threonine kinase activity. J. Biol. Chem. 269:15092–15100
  • Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G., Baldwin, A. S.Jr.. 1999. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19:5785–5799
  • Han, J., Luby Phelps, K., Das, B., Shu, X., Xia, Y., Mosteller, R. D., Krishna, U. M., Falck, J. R., White, M. A., and Broek, D.. 1998. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560
  • Harhaj, E. W., and Sun, S. C.. 1998. IκB kinases serve as a target of CD28 signaling. J. Biol. Chem. 273:25185–25190
  • Hehner, S. P., Heinrich, M., Bork, P. M., Vogt, M., Ratter, F., Lehmann, V., Schulze-Osthoff, K., Dröge, W., and Schmitz, M. L.. 1998. Sesquiterpene lactones specifically inhibit activation of NF-κB by preventing the degradation of IκB-α and IκB-β. J. Biol. Chem. 273:1288–1298
  • Hinz, M., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., and Strauss, M.. 1999. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell. Biol. 19:2690–2698
  • Hu, Y., Baud, V., Delhase, M., Zhang, P., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M.. 1999. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284:316–320
  • Huxford, T., Huang, D. B., Malek, S., and Ghosh, G.. 1998. The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell 95:759–770
  • Ichijo, H., Nishida, E., Irie, K., Ten-Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K., and Gotoh, Y.. 1997. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94
  • Ing, Y. L., Leung, I. W., Heng, H. H., Tsui, L. C., and Lassam, N. J.. 1994. MLK-3: identification of a widely-expressed protein kinase bearing an SH3 domain and a leucine zipper-basic region domain. Oncogene 9:1745–1750
  • Jacinto, E., Werlen, G., and Karin, M.. 1998. Cooperation between Syk and Rac1 leads to synergistic JNK activation in T lymphocytes. Immunity 8:31–41
  • Jain, J., Loh, C., and Rao, A.. 1995. Transcriptional regulation of the IL2 gene. Curr. Opin. Immunol. 7:333–342
  • Jung, S., Yaron, A., Alkalay, I., Hatzubai, A., Avraham, A., and Ben-Neriah, Y.. 1995. Costimulation requirement for AP-1 and NF-κB transcription factor activation in T cells. Ann. N. Y. Acad. Sci. 766:245–252
  • Kaltschmidt, B., Kaltschmidt, C., Hehner, S. P., Dröge, W., and Schmitz, M. L.. 1999. Repression of NF-κB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene 18:3213–3225
  • Karin, M., Liu, Z., and Zandi, E.. 1997. AP-1 function and regulation. Curr. Opin. Cell Biol. 9:240–246
  • Karin, M., and Delhase, M.. 1998. JNK or IKK, AP-1 or NF-κB, which are the targets for MEK kinase 1 action? Proc. Natl. Acad. Sci. USA 95:9067–9069
  • Katoh, M., Hirai, M., Sugimura, T., and Terada, M.. 1995. Cloning and characterization of MST, a novel (putative) serine/threonine kinase with SH3 domain. Oncogene 10:1447–1451
  • Kempiak, S. J., Hiura, T. S., and Nel, A. E.. 1999. The Jun kinase cascade is responsible for activating the CD28 response element of the IL-2 promoter: proof of cross-talk with the IκB kinase cascade. J. Immunol. 162:3176–3187
  • Köntgen, F., Grumont, R. J., Strasser, A., Metcalf, D., Li, R., Tarlinton, D., and Gerondakis, S.. 1995. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9:1965–1977
  • Leung, I. W., and Lassam, N.. 1998. Dimerization via tandem leucine zippers is essential for the activation of the mitogen-activated protein kinase kinase kinase, MLK-3. J. Biol. Chem. 273:32408–32415
  • Lee, F. S., Hagler, J., Chen, Z. J., and Maniatis, T.. 1997. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–222
  • Lee, F. S., Peters, R. T., Dang, L. C., and Maniatis, T.. 1998. MEKK1 activates both IκB kinase α and IκB kinase β. Proc. Natl. Acad. Sci. USA 95:9319–9324
  • Li, N., and Karin, M.. 1998. Ionizing radiation and short wavelength UV activate NF-κB through two distinct mechanisms. Proc. Natl. Acad. Sci. USA 95:13012–13017
  • Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F., and Verma, I. M.. 1999a. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284:321–325
  • Li, Q., Lu, Q., Hwang, J. Y., Buscher, D., Lee, K. F., Izpisua-Belmonte, J. C., and Verma, I. M.. 1999b. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev. 13:1322–1328
  • Lin, A., Minden, A., Martinetto, H., Claret, F. X., Lange-Carter, C., Mercurio, F., Johnson, G. L., and Karin, M.. 1995. Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268:286–290
  • Lin, X., Cunningham, E. T.Jr, Mu, Y., Geleziunas, R., and Greene, W. C.. 1999. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 10:271–280
  • Ling, L., Cao, Z., and Goeddel, D. V.. 1998. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. USA 95:3792–3797
  • Malinin, N. L., Boldin, M. P., Kovalenko, A. V., and Wallach, D.. 1997. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385:540–544
  • Maniatis, T.. 1997. Catalysis by a multiprotein IκB kinase complex. Science 278:818–819
  • Maniatis, T.. 1999. A ubiquitin ligase complex essential for the NF-κB, Wnt/Wingless and Hedgehog signaling pathways. Genes Dev. 13:505–510
  • May, M. J., and Ghosh, S.. 1999. IκB kinases: kinsmen with different crafts. Science 284:271–273
  • McGuire, K. L., and Iacobelli, M.. 1997. Involvement of Rel, Fos and Jun proteins in binding activity to the IL2 promoter CD28 response element/AP-1 sequence in human T cells. J. Immunol. 159:1319–1327
  • Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbosa, M., Mann, M., Manning, A., and Rao, A.. 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866
  • Mercurio, F., Murray, B. W., Shevchenko, A., Bennett, B. L., Young, D. B., Li, J. W., Pascual, G., Motiwala, A., Zhu, H., Mann, M., and Manning, A. M.. 1999. IκB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol. 19:1526–1538
  • Miyazaki, T., Liu, Z. J., Kawahara, A., Minami, Y., Yamada, K., Tsujimoto, Y., Barsoumian, E. L., Permutter, R. M., and Taniguchi, T.. 1995. Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc and lck cooperate in hematopoietic cell proliferation. Cell 81:223–231
  • Montaner, S., Perona, R., Saniger, L., and Lacal, J. C.. 1999. Activation of serum response factor by RhoA is mediated by the nuclear factor-κB and C/EBP transcription factors. J. Biol. Chem. 274:8506–8515
  • Nakano, H., Shindo, M., Sakon, S., Nishinaka, S., Mihara, M., Yagita, H., and Okumura, K.. 1998. Differential regulation of IκB kinase α and β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc. Natl. Acad. Sci. USA 95:3537–3542
  • Nemoto, S., DiDonato, J. A., and Lin, A.. 1998. Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB-inducing kinase. Mol. Cell. Biol. 18:7336–7343
  • Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., and Matsumoto, K.. 1999. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256
  • Penninger, J. M., Fischer, K. D., Sasaki, T., Kozieradzki, I., Le, J., Tedford, K., Bachmaier, K., Ohashi, P. S., and Bachmann, M. F.. 1999. The oncogene product Vav is a crucial regulator of primary cytotoxic T cell responses but has no apparent role in CD28-mediated co-stimulation. Eur. J. Immunol. 29:1709–1718
  • Perona, R., Montaner, S., Saniger, L., Sanchez-Perez, I., Bravo, R., and Lacal, J. C.. 1997. Activation of the nuclear factor-κB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 11:463–475
  • Rana, A., Gallo, K., Godowski, P., Hirai, S., Ohno, S., Zon, L., Kyriakis, J. M., and Avruch, J.. 1996. The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J. Biol. Chem. 271:19025–19028
  • Regnier, C. H., Song, H. Y., Gao, X., Goeddel, D. V., Cao, Z., and Rothe, M.. 1997. Identification and characterization of an IκB kinase. Cell 90:373–383
  • Rothwarf, D. M., Zandi, E., Natoli, G., and Karin, M.. 1998. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395:297–300
  • Shapiro, V. S., Truitt, K. E., Imboden, J. B., and Weiss, A.. 1997. CD28 mediates transcriptional upregulation of the interleukin-2 (IL2) promoter through a composite element containing the CD28RE and NF-IL2B AP-1 sites. Mol. Cell. Biol. 17:4051–4058
  • Su, B., Jacinto, E., Hibi, M., Kallunki, T., Karin, M., and Ben-Neriah, Y.. 1994. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77:727–736
  • Tanaka, M., Fuentes, M. E., Yamaguchi, K., Durnin, M. H., Dalrymple, S. A., Hardy, K. L., and Goeddel, D. V.. 1999. Embryonic lethality, liver degeneration and impaired NF-κB activation in IKK-β-deficient mice. Immunity 10:421–429
  • Teramoto, H., Coso, O. A., Miyata, H., Igishi, T., Miki, T., and Gutkind, J. S.. 1996. Signaling from the small GTP-binding proteins Rac and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J. Biol. Chem. 271:27225–27228
  • Tibbles, L. A., Ing, Y. L., Kiefer, F., Chan, J., Iscove, N., Woodgett, J. R., and Lassam, N. J.. 1996. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J. 15:7026–7035
  • Verma, I. M., and Stevenson, J.. 1997. IκB kinase: beginning, not the end. Proc. Natl. Acad. Sci. USA 94:11758–11760
  • Whitmarsh, A. J., Cavanagh, J., Tournier, C., Yasuda, J., and Davis, R. J.. 1998. A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281:1671–1674
  • Woronicz, J. D., Gao, X., Cao, Z., Rothe, M., and Goeddel, D. V.. 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278:866–869
  • Yamaoka, S., Courtois, G., Bessia, C., Whiteside, S. T., Weil, R., Agou, F., Kirk, H. E., Kay, R. J., and Israel, A.. 1998. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93:1231–1240
  • Yaron, A., Hatzubai, A., Davis, M., Lavon, I., Amit, S., Manning, A. M., Andersen, J. S., Mann, M., Mercurio, F., and Ben-Neriah, Y.. 1998. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396:590–594
  • Yujiri, T., Sather, S., Fanger, G. R., and Johnson, G. L.. 1998. Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science 282:1911–1914
  • Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M., and Karin, M.. 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252
  • Zhao, Q., and Lee, F. S.. 1999. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-κB through IκB kinase-α and IκB kinase-β. J. Biol. Chem. 274:8355–8358

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.