69
Views
141
CrossRef citations to date
0
Altmetric
Gene Expression

Glucose Limitation Induces GCN4 Translation by Activation of Gcn2 Protein Kinase

, &
Pages 2706-2717 | Received 07 Sep 1999, Accepted 07 Jan 2000, Published online: 27 Mar 2023

REFERENCES

  • Abastado, J. P., Miller, P. F., Jackson, B. M., and Hinnebusch, A. G.. 1991. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis of GCN4 translational control. Mol. Cell. Biol. 11:486–496
  • Andrulis, I. L., Hatfield, G. W., and Arfin, S. M.. 1979. Asparaginyl-tRNA aminoacylation levels and asparagine synthetase expression in cultured Chinese hamster ovary cells. J. Biol. Chem. 254:10629–10633
  • Barbosa-Tessmann, I. P., Pineda, V. L., Nick, H. S., Schuster, S. M., and Kilberg, M. S.. 1999. Transcriptional regulation of the human asparagine synthetase gene by carbohydrate availability. Biochem. J. 339:151–158
  • Bergmeyer, H. U., Bernt, E., Schmidt, F., and Stork, H.. d-Glucose Methods of enzymatic analysis Bergmeyer, H. U. 3:1196–1201 Academic Press, Inc., New York, N.Y
  • Berlanga, J. J., Santoyo, J., and De Haro, C.. 1999. 1974. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur. J. Biochem. 265:754–762
  • Bradford, M. M.. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254
  • Brostrom, C. O., and Brostrom, M. A.. 1998. Regulation of translation initiation during cellular response to stress. Prog. Nucleic Acid Res. Mol. Biol. 58:79–125
  • Cannon, J. F., and Tatchell, K.. 1987. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 7:2653–2663
  • Chen, J. J., and London, I. M.. 1995. Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem. Sci. 20:105–108
  • Cigan, A. M., Bushman, J. L., Boal, T. R., and Hinnebusch, A. G.. 1993. A protein complex of translational regulators of GCN4 mRNA is the guanine nucleotide-exchange factor for translation initiation factor 2 in yeast. Proc. Natl. Acad. Sci. USA 90:5350–5354
  • Clemens, M. J.. 1996. Protein kinases that phosphorylate eIF2 and eIF2B, and their role in eukaryotic cell translational control Translational control. Hershey, J. W. B., Mathews, M. B., and Sonenberg, N. 139–172 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Coleman, S. T., Tseng, E., and Moye-Rowley, W. S.. 1997. Saccharomyces cerevisiae basic region-leucine zipper protein regulatory networks converge at the ATR1 structural gene. J. Biol. Chem. 272:23224–23230
  • Dang, V. D., Valens, M., Bolatin-Fukuhar, M., and Daignman-Fornier, B.. 1996. Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: differential regulation by the CCAAT-box-binding factor. Mol. Microbiol. 22:681–692
  • DeGracia, D. J., Sullivan, J. M., Neumar, R. W., Alousi, S. S., Hikade, K. R., Pittman, J. E., White, B. C., Rafols, J. A., and Krause, G. S.. 1997. Effect of brain ischemia and reperfusion on the localization of phosphorylated eukaryotic initiation factor 2α. J. Cereb. Blood Flow Metab. 17:1291–1302
  • de Haro, C., Mendez, R., and Santoyo, J.. 1996. The eIF-2α kinases and the control of protein synthesis. FASEB J. 10:1378–1388
  • Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F., and Hinnebusch, A. G.. 1992. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596
  • Guerrini, L., Gong, S. S., Mangasarian, K., and Basilico, C.. 1993. cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol. Cell. Biol. 13:3203–3212
  • Hannig, E. M., and Hinnebusch, A. G.. 1988. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Mol. Cell. Biol. 8:4808–4820
  • Hannig, E. M., Williams, N. P., Wek, R. C., and Hinnebusch, A. G.. 1990. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae. Genetics 126:546–562
  • Harding, H. P., Zhang, Y., and Ron, D.. 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274
  • Hardy, T. A., and Roach, P. J.. 1993. Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J. Biol. Chem. 268:23799–23805
  • Hinnebusch, A. G.. General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae The molecular and cellular biology of the yeast Saccharomyces Jones, E. W., Pringle, J. R., and Broach, J. R. 2:319–414 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Hinnebusch, A. G.. 1992. Translational control of GCN4: gene-specific regulation by phosphorylation of eIF-2 Translational control. Hershey, J. W. B., Mathews, M. B., and Sonenberg, N. 1996. 199–244 Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Hinnebusch, A. G.. 1997. Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J. Biol. Chem. 272:21661–21664
  • Johnston, M., and Carlson, M.. Regulation of carbon and phosphate utilization p. 193–282. In Broach, J. R., Pringle, J. R., and Jones, E. W. The molecular and cellular biology of the yeast Saccharomyces, vol. 2. Gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Jones, E. W., and Fink, G. R.. 1992. Regulation of amino acid and nucleotide biosynthesis in yeast The molecular biology of the yeast Saccharomyces, metabolism and gene expression. Strathern, J. N., Jones, E. W., and Broach, J. R. 1982. 181–299 Cold Spring Harbor Laboratory, Cold Spring HarborNew York, N.Y.
  • Kaiser, C., Michaelis, S., and Mitchell, A.. 1994. Methods in yeast genetics 207–217 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Keppler, D., and Decker, K.. Glycogen determination with amyloglucosidase Methods of enzymatic analysis Bergmeyer, H. U. 3:1127–1131 Academic Press, Inc., New York, N.Y
  • Kilberg, M. S., Hutson, R. G., and Laine, R. O.. 1994. 1974. Amino acid-regulated gene expression in eukaryotic cells. FASEB J. 8:13–19
  • Marton, M. J., Crouch, D., and Hinnebusch, A. G.. 1993. GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol. Cell. Biol. 13:3541–3556
  • Marton, M. J., Vazquez de Aldana, C. R., Qui, H., Chakraburtty, K., and Hinnebusch, A. G.. 1997. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF-2α kinase GCN2. Mol. Cell. Biol. 17:4474–4489
  • Merrick, W. C., and Hershey, J. W. B.. 1996. The pathway and mechanism of eukaryotic protein synthesis Translational control. Hershey, J. W. B., Mathews, M. B., and Sonenberg, N. 31–70 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Messenguy, F., Colin, D., and ten Have, J. P.. 1980. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur. J. Biochem. 108:439–447
  • Mueller, P. P., and Hinnebusch, A. G.. 1986. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201–207
  • Ohsumi, Y., Kitamoto, K., and Anraku, Y.. 1988. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J. Bacteriol. 170:2676–2682
  • Pain, V. M.. 1994. Translational control during amino acid starvation. Biochimie 76:718–728
  • Pain, V. M., and Clemens, M. J.. 1991. Adjustment of translation to special physiological conditions Translation in eukaryotes. Trachsel, H. 293–324 CRC Press, Inc., Boca Raton, Fla
  • Pavitt, G. D., Ramaiah, K. V., Kimball, S. R., and Hinnebusch, A. G.. 1998. eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev. 12:514–526
  • Pavitt, G. D., Yang, W., and Hinnebusch, A. G.. 1997. Homologous segments in three subunits of the guanine nucleotide exchange factor eIF2β mediate translational regulation by phosphorylation of eIF2. Mol. Cell. Biol. 17:1298–1313
  • Proud, C. G.. 1995. PKR: a new name and new roles. Trends Biochem. Sci. 20:217–256
  • Qiu, H., Garcia-Barrio, M. T., and Hinnebusch, A. G.. 1998. Dimerization by translation initiation factor 2 kinase GCN2 is mediated by interactions of the C-terminal ribosome binding region and the protein kinase domain. Mol. Cell. Biol. 18:2697–2711
  • Ramirez, M., Wek, R. C., and Hinnebusch, A. G.. 1991. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3027–3036
  • Rolfes, R. J., and Hinnebusch, A. G.. 1993. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol. Cell. Biol. 13:5099–5111
  • Rothstein, R.. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301
  • Roussou, I., Thireos, G., and Hauge, B. M.. 1988. Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol. Cell. Biol. 8:2132–2139
  • Shi, Y., Vattem, K. M., Sood, R., An, J., Liang, J., Stramm, L., and Wek, R. C.. 1998. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translation control. Mol. Cell. Biol. 18:7499–7509
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designated for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Sood, R., Porter, A. C., Ma, K., and Wek, R. C.. 2000. Pancreatic eukaryotic initiation factor-2α kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to ER stress. Biochem. J. 346:281–293
  • Sood, R., Porter, A. C., Olsen, D., Cavener, D. R., and Wek, R. C.. 2000. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α. Genetics 154:787–801
  • Spies, J. R.. 1957. Colorimetric procedures for amino acids. Methods Enzymol. 3:467–477
  • Vazques de Aldana, C. R., Marton, M. J., and Hinnebusch, A. G.. 1995. GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2α kinase GCN2 in amino acid-starved cells. EMBO J. 14:3184–3199
  • Wek, R. C.. 1994. eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem. Sci. 19:491–496
  • Wek, R. C., Cannon, J. F., Dever, T. E., and Hinnebusch, A. G.. 1992. Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2α kinase GCN2. Mol. Cell. Biol. 12:5700–5710
  • Wek, R. C., Jackson, B. M., and Hinnebusch, A. G.. 1989. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc. Natl. Acad. Sci. USA 86:4579–4583
  • Wek, R. C., Ramirez, M., Jackson, B. M., and Hinnebusch, A. G.. 1990. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol. Cell. Biol. 10:2820–2831
  • Wek, S. A., Zhu, S., and Wek, R. C.. 1995. The histidyl-tRNA synthetase-related sequence in eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15:4497–4506
  • Yang, R., Chun, K. T., and Wek, R. C.. 1998. Mitochondrial respiratory mutants in yeast inhibit glycogen accumulation by blocking activation of glycogen synthase. J. Biol. Chem. 278:31337–31344
  • Zaman, Z., Bowman, S. B., Kornfeld, G. D., Brown, A. J., and Dawes, I. W.. 1999. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase. Biochem. J. 340:855–862
  • Zhu, S., Sobolev, A. Y., and Wek, R. C.. 1996. Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J. Biol. Chem. 271:24989–24994
  • Zhu, S., and Wek, R. C.. 1998. Ribosome binding domain of eukaryotic initiation factor-2 kinase GCN2 facilitates translation control. J. Biol. Chem. 273:1808–1814

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.