38
Views
269
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Stress Signals Utilize Multiple Pathways To Stabilize p53

, &
Pages 3224-3233 | Received 09 Sep 1999, Accepted 01 Feb 2000, Published online: 27 Mar 2023

REFERENCES

  • An, W. G., Kanekal, M., Simon, M. C., Maltepe, E., Blagosklonny, M. V., and Neckers, L. M.. 1998. Stabilization of wild-type by hypoxia-inducible factor 1alpha. Nature 392:405–408
  • Arriola, E. L., Rodriguez Lopez, A., and Chresta, C. M.. 1999. Differential regulation of p21waf-1/cip-1 and Mdm2 by etoposide: etoposide inhibits the p53-Mdm2 autoregulatory loop. Oncogene 18:1081–1091
  • Ashcroft, M., Kubbutat, M. H., and Vousden, K. H.. 1999. Regulation of p53 function and stability by phosphorylation. Mol. Cell. Biol. 19:1751–1758
  • Ashcroft, M., and Vousden, K. H.. 1999. Regulation of p53 stability. Oncogene 18:7637–7643
  • Banin, S., Moyal, L., Shieh, S.-Y., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y.. 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677
  • Barak, Y., Juven, T., Haffner, R., and Oren, M.. 1993. Mdm-2 expression is induced by wild type p53 activity. EMBO J. 12:461–468
  • Bates, S., Phillips, A. C., Clarke, P. A., Stott, F., Peters, G., Ludwig, R. L., and Vousden, K. H.. 1998. p14ARF links the tumour suppressors RB and p53. Nature 395:124–125
  • Bates, S., and Vousden, K. H.. 1996. p53 in signalling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6:1–7
  • Blattner, C., Sparks, A., and Lane, D.. 1999. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell. Biol. 19:3704–3713
  • Blattner, C., Tobiasch, E., Litfen, M., Rahmsdorf, H. J., and Herrlich, P.. 1999. DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene 18:1723–1732
  • Brugarolas, J., Chandrasekaran, C., Gordon, J. I., Beach, D., Jacks, T., and Hannon, G. J.. 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–556
  • Bulavin, D., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E., Fornace, A. J.Jr.. 1999. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18:6845–6854
  • Canman, C. E., Lim, D.-S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B., and Siliciano, J. D.. 1998. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679
  • Choi, J., and Donehower, L. A.. 1999. p53 in embryonic development: maintaining a fine balance. Cell. Mol. Life Sci. 55:38–47
  • Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P.. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684
  • de Stanchina, E., McCurrach, M. E., Zindy, F., Shieh, S. Y., Ferbeyre, G., Samuelson, A. V., Prives, C., Roussel, M. F., Sherr, C. J., and Lowe, S. W.. 1998. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12:2434–2442
  • Elenbaas, B., Dobbelstein, M., Roth, J., Shenk, T., and Levine, A. J.. 1996. The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol. Med. 2:439–451
  • Freedman, D. A., and Levine, A. J.. 1998. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18:7288–7293
  • Haupt, Y., Maya, R., Kazaz, A., and Oren, M.. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299
  • Honda, R., Tanaka, H., and Yasuda, H.. 1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420:25–27
  • Honda, R., and Yasuda, H.. 1999. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18:22–27
  • Hsiang, Y. H., Hertzberg, R., Hecht, S., and Liu, L. F.. 1985. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260:14873–14878
  • Hupp, T. R., and Lane, D. P.. 1994. Allosteric activation of latent p53 tetramers. Curr. Biol. 4:865–875
  • Jones, S. N., Roe, A. E., Donehower, L. A., and Bradley, A.. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208
  • Kamijo, T., Weber, J. D., Zambetti, G., Zindy, F., Roussel, M. F., and Sherr, C. J.. 1998. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. USA 95:8292–8297
  • Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G., and Sherr, C. J.. 1997. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659
  • Kessis, T. D., Slebos, R. J., Nelson, W. G., Kastan, M. B., Plunkett, B. S., Han, S. M., Lorincz, A. T., Hedrick, L., and Cho, K. R.. 1993. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 90:3988–3992
  • Kubbutat, M. H. G., Jones, S. N., and Vousden, K. H.. 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303
  • Kubbutat, M. H. G., and Vousden, K. H.. 1998. Keeping an old friend under control: regulation of p53 stability. Mol. Med. Today 4:250–256
  • Lain, S., Midgley, C., Sparks, A., Lane, E. B., and Lane, D. P.. 1999. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODS. Exp. Cell Res. 248:457–472
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331
  • Ljungman, M., Zhang, F., Chen, F., Rainbow, A. J., and McKay, B. C.. 1999. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 18:583–592
  • Lohrum, M. A. E., Ashcroft, M., Kubbutat, M. H. G., and Vousden, K. H.. 2000. Identification of a cryptic nucleolar-localization signal in MDM2. Nat. Cell Biol. 2:179–181
  • Middeler, G., Zerf, K., Jenovai, S., Thulig, A., Tschodrich-Rotter, M., Kubitscheck, U., and Peters, R.. 1997. The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited. Oncogene 14:1407–1417
  • Midgley, C. A., Fisher, C. J., Bartek, J., Vojtesek, B., Lane, D. P., and Barnes, D. M.. 1992. Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in E. coli. J. Cell Sci. 101:183–189
  • Montes de Oca Luna, R., Wagner, D. S., and Lozano, G.. 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206
  • Palmero, I., Pantoja, C., and Serrano, M.. 1998. p19ARF links the tumour suppressor p53 to Ras. Nature 395:125–126
  • Pomerantz, J., Schreiber-Agus, N., Liégeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H.-W., Cordon-Cardo, C., and DePinho, R. A.. 1998. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92:713–723
  • Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T., and Levine, A. J.. 1998. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17:554–564
  • Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E.. 1998. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841
  • Shaulsky, G., Goldfinger, N., Ben-Ze'ev, A., and Rotter, V.. 1990. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell. Biol. 10:6565–6577
  • Shaulsky, G., Goldfinger, N., Tosky, M. S., Levine, A., and Rotter, V.. 1991. Nuclear localization is essential for the activity of p53 protein. Oncogene 6:2055–2065
  • Sherr, C. J.. 1998. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12:2984–2991
  • Shieh, S.-Y., Ikeda, M., Taya, Y., and Prives, C.. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334
  • Shieh, S. Y., Taya, Y., and Prives, C.. 1999. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 18:1815–1823
  • Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M. B.. 1997. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11:3471–3481
  • Stommel, J. M., Marchenko, N. D., Jimenez, G. S., Moll, U. M., Hope, T. J., and Wahl, G. M.. 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18:1660–1672
  • Stott, F., Bates, S. A., James, M., McConnell, B. B., Starborg, M., Brookes, S., Palmero, I., Hara, E., Ryan, K. M., Vousden, K. H., and Peters, G.. 1998. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17:5001–5014
  • Tao, W., and Levine, A. J.. 1999. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc. Natl. Acad. Sci. USA 96:3077–3080
  • Tao, W., and Levine, A. J.. 1999. p19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl. Acad. Sci. USA 96:6937–6941
  • Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S. Y., Taya, Y., Prives, C., and Abraham, R. T.. 1999. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13:152–157
  • Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Vogt Sionov, R., Lozano, G., Oren, M., and Haupt, Y.. 1999. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 18:1805–1814
  • Waldman, T., Kinzler, K. W., and Vogelstein, B.. 1995. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55:5187–5190
  • Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J., and Bar-Sagi, D.. 1999. Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol. 1:20–26
  • Wu, L., and Levine, A. J.. 1997. Differential regulation of the p21/WAF-1 and mdm2 genes after high dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene. Mol. Med. 3:441–451
  • Wu, X. W., Bayle, J. H., Olson, D., and Levine, A. J.. 1993. The p53 mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132
  • Yokoyama, Y., Niwa, K., and Tamaya, T.. 1992. Scattering of the silver-stained proteins of nucleolar organizer regions in Ishikawa cells by actinomycin D. Exp. Cell Res. 202:77–86
  • Zhang, Y., and Xiong, Y.. 1999. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of Mdm2 and p53. Mol. Cell 3:579–591
  • Zindy, F., Eischen, C. M., Randle, D. H., Kamijo, T., Cleveland, J. L., Sherr, C. J., and Roussel, M. F.. 1998. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12:2424–2433

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.