9
Views
70
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Matrix Attachment Region-Dependent Function of the Immunoglobulin μ Enhancer Involves Histone Acetylation at a Distance without Changes in Enhancer Occupancy

, &
Pages 196-208 | Received 17 Aug 2000, Accepted 10 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1993. Current protocols in molecular biology. Greene and Wiley-Interscience, New York, N.Y
  • Bannister, A. J., and T. Kouzarides. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643.
  • Beckmann, H., L. K. Su, and T. Kadesch. 1990. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev. 4:167–179.
  • Belmont, A. S., S. Dietzel, A. C. Nye, Y. G. Strukov, and T. Tumbar. 1999. Large-scale chromatin structure and function. Curr. Opin. Cell Biol. 11:307–311.
  • Bhattacharya, S. K., S. Ramchandani, N. Cervoni, and M. Szyf. 1999. A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397:579–583.
  • Blackwood, E. M., and J. T. Kadonaga. 1998. Going the distance: a current view of enhancer action. Science 281:60–63.
  • Bode, J., Y. Kohwi, L. Dickinson, T. John, D. Klehr, C. Mielke, and T. Kohwi-Shigematsu. 1992. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255:195–197.
  • Brehm, A., E. A. Miska, D. J. McCance, J. L. Reid, A. J. Bannister, and T. Kouzarides. 1998. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601.
  • Brown, C. E., T. Lechner, L. Howe, and J. L. Workman. 2000. The many HATs of transcription coactivators. Trends Biochem. Sci. 25:15–19.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and C. D. Allis. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, L. M. Privalsky, Y. Nakatani, and R. M. Evans. 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.
  • Chomczynski, P., and N. Sacchi. 1987. Method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Cirillo, L. A., and K. S. Zaret. 1999. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol. Cell 4:961–969.
  • Cockerill, P. N., M.-H. Yuen, and W. T. Garrard. 1987. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem. 262:5394–5397.
  • Crane-Robinson, C., and A. P. Wolffe. 1998. Immunological analysis of chromatin: FIS and CHIPS. Trends Genet. 14:477–480.
  • Davie, J. R.. 1995. The nuclear matrix and the regulation of chromatin organization and function. Int. Rev. Cytol. 162A:191–250.
  • Davie, J. R.. 1997. Nuclear matrix, dynamic histone acetylation and transcriptionally active chromatin. Mol. Biol. Rep. 24:197–207.
  • Dillon, N., and F. Grosveld. 1994. Chromatin domains as potential units of eukaryotic gene function. Curr. Opin. Genet. Dev. 4:260–264.
  • Ephrussi, A., G. Church, S. Tonegawa, and W. Gilbert. 1985. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140.
  • Ernst, P., and S. T. Smale. 1995. Combinatorial regulation of transcription II: the immunoglobulin μ heavy chain gene. Immunity 2:427–438.
  • Felsenfeld, G., J. Boyes, J. Chung, D. Clark, and V. Studitsky. 1996. Chromatin structure and gene expression. Proc. Natl. Acad. Sci. USA 93:9384–9388.
  • Forrester, W. C., L. A. Fernández, and R. Grosschedl. 1999. Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer-promoter interactions. Genes Dev. 13:3003–3014.
  • Forrester, W. C., C. van Genderen, T. Jenuwein, and R. Grosschedl. 1994. Dependence of enhancer-mediated transcription of the immunoglobulin μ gene on nuclear matrix attachment regions. Science 265:1221–1225.
  • Garrity, P. A., and B. Wold. 1992. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc. Natl. Acad. Sci. USA 89:1021–1025.
  • Grosveld, F.. 1999. Activation by locus control regions?. Curr. Opin. Genet. Dev. 9:152–157.
  • Grunstein, M.. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349–352.
  • Hart, C. M., and U. K. Laemmli. 1998. Facilitation of chromatin dynamics by SARs. Curr. Opin. Genet. Dev. 8:519–525.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and C. Crane-Robinson. 1994. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13:1823–1830.
  • Herrera, J. E., K. L. West, R. L. Schiltz, Y. Nakatani, and M. Bustin. 2000. Histone H1 is a specific repressor of core histone acetylation in chromatin. Mol. Cell. Biol. 20:523–529.
  • Herrscher, R. F., M. H. Kaplan, D. L. Lelsz, C. Das, R. Scheuermann, and P. W. Tucker. 1995. The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev. 9:3067–3082.
  • Jenuwein, T., and R. Grosschedl. 1991. Complex pattern of immunoglobulin μ gene expression in normal and transgenic mice: nonoverlapping regulatory sequences govern distinct tissue specificities. Genes Dev. 5:932–943.
  • Jenuwein, T., W. C. Forrester, R. G. Qiu, and R. Grosschedl. 1993. The immunoglobulin μ enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. Genes Dev. 7:2016–2032.
  • Jenuwein, T., W. C. Forrester, L. A. Fernandez-Herrero, G. Laible, M. Dull, and R. Grosschedl. 1997. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385:269–272.
  • Jones, P. L., G. J. C. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass, N. Landsberger, J. Strouboulis, and A. P. Wolffe. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19:187–191.
  • Kashiwamura, S., T. Koyama, T. Matsuo, and M. Steinmetz. 1990. Structure of the murine mb-1 gene encoding a putative sIgM-associated molecule. J. Immunol. 145:337–343.
  • Keohane, A. M., J. S. Lavender, L. P. O'Neill, and B. M. Turner. 1998. Histone acetylation and X inactivation. Dev. Genet. 22:65–73.
  • Kioussis, D., and R. Festenstein. 1997. Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. Curr. Opin. Genet. Dev. 7:614–619.
  • Kirillov, A., B. Kistler, R. Mostoslavsky, H. Cedar, T. Wirth, and Y. Bergman. 1996. A role for nuclear NF-κB in B-cell-specific demethylation of the Igκ locus. Nat. Genet. 13:435–441.
  • Klehr, D., K. Maas, and J. Bode. 1991. Scaffold-attached regions from the human interferon β domain can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry 30:1264–1270.
  • Kuo, M.-H., J. Zhou, P. Jambeck, E. A. M. Churchill, and C. D. Allis. 1998. Targeted histone acetyltransferase activity of yeast Gcn5p is required for the activation of downstream genes in vivo. Genes Dev. 12:627–639.
  • Laemmli, U. K., E. Käs, L. Poljak, and Y. Adachi. 1992. Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Genet. Dev. 2:275–285.
  • Lennon, G. G., and R. P. Perry. 1985. Cμ-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature 318:475–478.
  • Ling, X., T. A. Harkness, C. M. Schultz, G. F. Adams, and M. Grunstein. 1996. Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation. Genes Dev. 10:686–699.
  • Luger, K., and T. J. Richmond. 1998. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8:140–146.
  • Luger, K., A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260.
  • McMurry, M. T., and M. S. Krangel. 2000. A role for histone acetylation in the developmental regulation of V(D)J recombination. Science 287:495–498.
  • Misteli, T., and D. Spector. 1998. The cellular organization of gene expression. Curr. Opin. Cell Biol. 10:323–331.
  • Nan, X., F. J. Campoy, and A. Bird. 1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481.
  • Nan, X., H.-H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner, R. N. Eisenman, and A. Bird. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389.
  • Nelsen, B., G. Tian, B. Erman, J. Gregoire, R. Maki, B. Graves, and R. Sen. 1993. Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins. Science 261:82–86.
  • Ng, H. H., P. Jeppesen, and A. Bird. 2000. Active repression of methylated genes by the chromosomal protein MBD1. Mol. Cell. Biol. 20:1394–1406.
  • Nikolajczyk, B. S., J. A. Sanchez, and R. Sen. 1999. ETS protein-dependent accessibility changes at the immunoglobulin mu heavy chain enhancer. Immunity 11:11–20.
  • Nikolajczyk, B. S., M. Cortes, R. Feinman, and R. Sen. 1997. Combinatorial determinants of tissue-specific transcription in B cells and macrophages. Mol. Cell. Biol. 17:3527–3535.
  • O'Neill, L. P., and B. M. Turner. 1995. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14:3946–3957.
  • Orlando, V. V., H. Strutt, and R. Paro. 1997. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214.
  • Parekh, B. S., and T. Maniatis. 1999. Virus infection leads to localized hyperacetylation of histone H3 and H4 at the IFN-β promoter. Mol. Cell 3:125–129.
  • Pederson, T.. 1998. Thinking about a nuclear matrix. J. Mol. Biol. 277:147–159.
  • Phi-Van, L., J. P. von Kries, W. Ostertag, and W. H. Strätling. 1990. The chicken lysozyme 5′ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol. Cell. Biol. 10:2302–2307.
  • Pikaart, J. M., F. Recillas-Targa, and G. Felsenfeld. 1998. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12:2852–2862.
  • Pogo, B. G. T., V. G. Allfrey, and A. E. Mirsky. 1966. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl. Acad. Sci. USA 55:805–812.
  • Ptashne, M., and A. Gann. 1997. Transcriptional activation by recruitment. Nature 386:569–577.
  • Reitman, M., E. Lee, H. Westphal, and G. Felsenfeld. 1993. An enhancer/locus control region is not sufficient to open chromatin. Mol. Cell. Biol. 13:3990–3998.
  • Rosenberg, N., and D. Baltimore. 1976. A quantitative assay for transformation of bone marrow cells by Abelson murine leukemia virus. J. Exp. Med. 143:1453–1463.
  • Sauter, P., and P. Matthias. 1998. Coactivator OBF-1 makes selective contacts with both the POU-specific domain and the POU homeodomain and acts as a molecular clamp on DNA. Mol. Cell. Biol. 18:7397–7409.
  • Scheuermann, R., and U. Chen. 1989. A developmental-specific factor binds to suppressor sites flanking the immunoglobulin heavy chain enhancer. Genes Dev. 3:1255–1266.
  • Schübeler, D., C. Francanstel, D. M. Cimbora, A. Reik, D. I. K. Martin, and M. Groudine. 2000. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev. 14:940–950.
  • Sealy, L., and R. Chalkley. 1978. DNA associated with hyperacetylated histone is preferentially digested by DNase I. Nucleic Acids Res. 5:1863–1876.
  • Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716.
  • Sheridan, P. L., T. P. Mayall, E. Verdin, and K. A. Jones. 1997. Histone acetyltransferases regulate the HIV-1 enhancer activity in vitro. Genes Dev. 11:3327–3340.
  • Struhl, K.. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606.
  • Su, L., and T. Kadesch. 1990. The immunoglobulin heavy-chain enhancer functions as the promoter for Iμ sterile transcription. Mol. Cell. Biol. 10:2619–2624.
  • van Holde, K., and J. Zlatanova. 1996. What determines the folding of the chromatin fiber?. Proc. Natl. Acad. Sci. USA 93:10548–10555.
  • Varga-Weisz, P. D., and P. B. Becker. 1998. Chromatin-remodeling factors: machines that regulate?. Curr. Opin. Cell Biol. 10:346–353.
  • Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman. 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15:2508–2518.
  • Vidali, G., L. C. Boffa, E. M. Bradbury, and V. G. Allfrey. 1978. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc. Natl. Acad. Sci. USA 75:2239–2243.
  • Vitolo, J. M., C. Thiriet, and J. J. Hayes. 2000. The H3–H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol. Cell. Biol. 20:2167–2175.
  • Wade, P. A., and A. P. Wolffe. 1999. Transcriptional regulation: SWItching circuitry. Curr. Biol. 9:221–224.
  • Wang, Z., A. Goldstein, R.-T. Zong, D. Lin, E. J. Neufeld, R. H. Scheuermann, and P. W. Tucker. 1999. Cux/CDP homeoprotein is a component of NF-μNR and represses the immunoglobulin heavy chain intronic enhancer by antagonizing the Bright transcription activator. Mol. Cell. Biol. 19:284–295.
  • Wasylyk, C., and B. Wasylyk. 1986. The immunoglobulin heavy-chain B-lymphocyte enhancer efficiently stimulates transcription in non-lymphoid cells. EMBO J. 5:553–560.
  • Weitzel, J. M., H. Buhrmester, and W. H. Stratling. 1997. Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol. Cell. Biol. 17:5656–5666.
  • Yamamoto, F., H. Kihara-Negishi, T. Yamada, Y. Hashimoto, and T. Oikawa. 1999. Physical and functional interactions between the transcription factor PU.1 and the coactivator CBP. Oncogene 18:1495–1501.
  • Zhao, K., E. Kas, E. Gonzalez, and U. K. Laemmli. 1993. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J. 12:3237–3247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.