52
Views
180
CrossRef citations to date
0
Altmetric
Gene Expression

Identification and Characterization of Human Orthologues to Saccharomyces cerevisiae Upf2 Protein and Upf3 Protein (Caenorhabditis elegans SMG-4)

, , , &
Pages 209-223 | Received 19 May 2000, Accepted 19 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Applequist, S. E., M. Selg, C. Raman, and H. M. Jäck. 1997. Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein. Nucleic Acids Res. 25:814–821.
  • Aravind, L., and E. V. Koonin. 2000. Eukaryote-specific domains in translation initiation factors: implications for translational regulation and evolution of the translational system. Genome Res. 10:1172–1184.
  • Atkin, A. L., N. Altamura, P. Leeds, and M. R. Culbertson. 1995. The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm. Mol. Biol. Cell 6:611–625.
  • Atkin, A. L., L. R. Schenkman, M. Eastham, J. N. Dahlseid, M. J. Lelivelt, and M. R. Culbertson. 1997. Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. J. Biol. Chem. 272:22163–22172.
  • Cáceres, J. F., G. R. Screaton, and A. R. Krainer. 1998. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12:55–66.
  • Cali, B. M., S. L. Kuchma, J. Latham, and P. Anderson. 1999. smg-7 is required for mRNA surveillance in Caenorhabditis elegans. Genetics 151:605–616.
  • Carter, M. S., S. Li, and M. F. Wilkinson. 1996. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 15:5965–5975.
  • Cheng, J., P. Belgrader, X. Zhou, and L. E. Maquat. 1994. Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol. Cell. Biol. 14:6317–6325.
  • Cui, Y., K. W. Hagan, S. Zhang, and S. W. Peltz. 1995. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev. 9:423–436.
  • Cui, Y., J. D. Dinman, and S. W. Peltz. 1996. Mof4–1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and −1 ribosomal frameshifting efficiency. EMBO J. 15:5726–5736.
  • Czaplinski, K., M. J. Ruiz-Echevarria, S. V. Paushkin, X. Han, Y. Weng, H. A. Perlick, H. C. Dietz, M. D. Ter Avanesyan, and S. W. Peltz. 1998. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12:1665–1677.
  • Czaplinski, K., Y. Weng, K. W. Hagan, and S. W. Peltz. 1995. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA 1:610–623.
  • Dunckley, T., and R. Parker. 1999. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18:5411–5422.
  • Ginisty, H., H. Sicard, B. Roger, and P. Bouvet. 1999. Structure and functions of nucleolin. J. Cell Sci. 112:761–772.
  • González, C. I., M. J. Ruiz-Echevarrı́a, S. Vasudevan, M. F. Henry, and S. W. Peltz. 2000. The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay. Mol. Cell 5:489–499.
  • Harlow, E., and D. Lane. 1999. Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • He, F., and A. Jacobson. 1995. Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev. 9:437–454.
  • He, F., A. H. Brown, and A. Jacobson. 1996. Interaction between Nmd2p and Upf1p is required for activity but not for dominant-negative inhibition of the nonsense-mediated mRNA decay pathway in yeast. RNA 2:153–170.
  • He, F., A. H. Brown, and A. Jacobson. 1997. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 17:1580–1594.
  • Hentze, M. W., and A. E. Kulozik. 1999. A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96:307–310.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Kozak, M.. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208.
  • Lee, B. S., and M. R. Culbertson. 1995. Identification of an additional gene required for eukaryotic nonsense mRNA turnover. Proc. Natl. Acad. Sci. USA 92:10354–10358.
  • Leeds, P., S. W. Peltz, A. Jacobson, and M. R. Culbertson. 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5:2303–2314.
  • Leeds, P., J. M. Wood, B. S. Lee, and M. R. Culbertson. 1992. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2165–2177.
  • Le Hir, H., M. J. Moore, and L. E. Maquat. 2000. Pre-mRNA splicing alters mRNP composition: evidence for a stable association of proteins at exon-exon junctions. Genes Dev. 14:1098–1108.
  • Li, Q., H. Imataka, S. Morino, G. W. Rogers Jr., N. J. Richter-Cook, W. C. Merrick, and N. Sonenberg. 1999. Eukaryotic translation initiation factor 4AIII(eIF4AIII) is functionally distinct from eIF4I and eIF4AII. Mol. Cell. Biol. 19:7336–7346.
  • Li, S., and M. R. Wilkinson. 1998. Nonsense surveillance in lymphocytes?. Immunity 8:135–141.
  • Lim, S.-K., and L. E. Maquat. 1992. Human β-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates that have a 5′ cap-like structure. EMBO J. 11:3271–3278.
  • Maquat, L. E.. 1995. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1:453–465.
  • Maquat, L. E.. 1996. Defects in RNA splicing and the consequence of shortened translational reading frames. Am. J. Hum. Genet. 59:279–286.
  • Maquat, L. E.. 2000. Nonsense-mediated RNA decay in mammalian cells: a splicing-dependent means to down-regulate the levels of mRNAs that prematurely terminate translation. Translational control of gene expression.. N. Sonenberg, J. W. B. Hershey, and M. B. Mathews. 849–868. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Michael, W. M., P. S. Eder, and G. Dreyfuss. 1997. The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J. 16:3587–3598.
  • Nagy, E., and L. E. Maquat. 1998. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23:198–199.
  • Page, M. F., B. Carr, K. R. Anders, A. Grimson, and P. Anderson. 1999. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol. Cell. Biol. 19:5943–5951.
  • Pal, M., Y. Ishigaki, E. Nagy, and L. E. Maquat. Evidence that phosphorylation of human Upf1 protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA, in press.
  • Perlick, H. A., S. M. Medghalchi, F. A. Spencer, R. J. Kendzior Jr., and H. C. Dietz. 1996. Mammalian orthologues of a yeast regulator of nonsense transcript stability. Proc. Natl. Acad. Sci. USA 93:10928–10932.
  • Piñol-Roma, S., and G. Dreyfuss. 1992. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355:730–732.
  • Pulak, R., and P. Anderson. 1993. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7:1885–1897.
  • Ruiz-Echevarria, M. J., J. M. Yasenchak, X. Han, J. D. Dinman, and S. W. Peltz. 1998. The Upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. Proc. Natl. Acad. Sci. USA 95:8721–8726.
  • Shirley, R. L., M. J. Lelivelt, L. R. Schenkman, J. N. Dahlseid, and M. R. Culbertson. 1998. A factor required for nonsense-mediated mRNA decay in yeast is exported from the nucleus to the cytoplasm by a nuclear export signal sequence. J. Cell Sci. 111:3129–3143.
  • Sun, X., P. M. Moriarty, and L. E. Maquat. 2000. Nonsense-mediated decay of glutathione peroxidase 1 mRNA in the cytoplasm is dependent on intron position and not restricted to newly synthesized mRNA. EMBO J. 19:4734–4744.
  • Sun, X., H. A. Perlick, H. C. Dietz, and L. E. Maquat. 1998. A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 95:10009–10014.
  • Sun, X., and L. E. Maquat. 2000. mRNA surveillance in mammalian cells: the relationship between introns and translation termination. RNA 6:1–8.
  • Thermann, R., G. Neu-Yilik, A. Deters, U. Frede, K. Wehr, C. Hagemeier, M. W. Hentze, and A. E. Kulozik. 1998. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J. 17:3484–3494.
  • Weng, Y., K. Czaplinski, and S. W. Peltz. 1996. Genetic and biochemical characterization of the mutations in the ATPase and helicase regions of Upf1 protein. Mol. Cell. Biol. 16:5477–5490.
  • Weng, Y., K. Czaplinski, and S. W. Peltz. 1996. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol. Cell. Biol. 16:5491–5506.
  • Weng, Y., K. Czaplinski, and S. W. Peltz. 1998. ATP is a cofactor of the Upf1 protein that modulates its translation termination and RNA binding activities. RNA 4:205–214.
  • Zhang, J., X. Sun, Y. Qian, J. P. LaDuca, and L. E. Maquat. 1998. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol. Cell. Biol. 18:5272–5283.
  • Zhang, J., X. Sun, Y. Qian, and L. E. Maquat. 1998. Intron function in the nonsense-mediated decay of β-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4:801–815.
  • Zhang, S., E. M. Welch, K. Hogan, A. H. Brown, S. W. Peltz, and A. Jacobson. 1997. Polysome-associated mRNAs are substrates for the nonsense-mediated mRNA decay pathway in Saccharomyces cerevisiae. RNA 3:234–244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.