14
Views
32
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Fission Yeast Rad17 Associates with Chromatin in Response to Aberrant Genomic Structures

, &
Pages 3289-3301 | Received 13 Oct 2000, Accepted 26 Feb 2001, Published online: 28 Mar 2023

REFERENCES

  • Al-Khodairy, F., E. Fotou, K. S. Sheldrick, D. J. Griffiths, A. R. Lehmann, and A. M. Carr. 1994. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol. Biol. Cell 5:147–160.
  • Bahler, J., J. Q. Wu, M. S. Longtine, N. G. Shah, A. McKenzie, A. B. Steever, A. Wach, P. Philippsen, and J. R. Pringle. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951.
  • Bessho, T., and A. Sancar. 2000. Human DNA damage checkpoint protein hRAD9 is a 3′ to 5′ exonuclease. J. Biol. Chem. 275:7451–7454.
  • Bhaumik, D., and T. S.-F. Wang. 1998. Mutational effect of fission yeast Polα on cell cycle events. Mol. Biol. Cell 9:2107–2123.
  • Boddy, M. N., B. Furnari, O. Mondesert, and P. Russell. 1998. Replication checkpoint enforced by kinase Cds1 and Chk1. Science 280:909–912.
  • Brondello, J.-M., M. N. Broddy, B. Furnari, and P. Russell. 1999. Basis for the checkpoint signal specificity that regulates Chk1 and Cds1 protein kinases. Mol. Cell. Biol. 19:4262–4269.
  • Burtelow, M. A., S. H. Kaufmann, and L. M. Karnitz. 2000. Retention of the hRad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage. J. Biol. Chem. 275:26343–26348.
  • Caspari, T., M. Dahlen, G. Kanter-Smoler, H. D. Lindsay, K. Hoffmann, K. Papadimitriou, P. Sunnerhagen, and A. M. Carr. 2000. Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9. Mol. Cell. Biol. 74:1254–1262.
  • Edwards, P. J., N. J. Bentley, and A. M. Carr. 1999. A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat. Cell Biol. 1:393–398.
  • Elledge, S. J.. 1996. Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672.
  • Francesconi, S., M. Grenon, D. Bouvier, and G. Baldacci. 1997. p56chk1 protein kinase is required for the DNA replication checkpoint at 37°C in fission yeast. EMBO J. 16:1332–1341.
  • Furnari, B., A. Blasina, M. N. Boddy, C. H. McGowan, and P. Russell. 1999. Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1. Mol. Biol. Cell 10:833–845.
  • Furnari, B., N. Rhind, and P. Russell. 1997. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277:1495–1497.
  • Gardner, R., C. W. Putnam, and T. Weinert. 1999. RAD53, DUN1 and PDS1 defines two parallel G2/M checkpoint pathways in budding yeast. EMBO J. 18:3173–3185.
  • Green, C. M., H. Erdjument-Bromage, P. Tempst, and N. F. Lowneds. 1999. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10:39–42.
  • Griffiths, D., M. Uchiyama, P. Nurse, and T. S.-F. Wang. 2000. A novel allele of the chromatin-bound fission yeast checkpoint protein Rad17 separates the DNA structure checkpoints. J. Cell. Sci. 113:1075–1088.
  • Griffiths, D. J. F., N. C. Barbet, S. McCready, A. R. Lehmann, and A. M. Carr. 1995. Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J. 14:5812–5823.
  • Gutz, H., H. Heslot, U. Leupold, and N. Loprieno. 1974. Schizosaccharomyces pombe. Handbook of genetics 1. R. C. King. I:395–446. Plenum Press, New York, N.Y
  • Hartwell, L. H., and M. B. Kastan. 1994. Cell cycle control and cancer. Science 266:1821–1828.
  • Hartwell, L. H., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Kostrub, C. F., K. Knudsen, S. Subramani, and T. Enoch. 1998. Hus1p, a conserved fission yeast checkpoint protein, interacts with Rad1p and is phosphorylated in response to DNA damage. EMBO J. 17:2055–2066.
  • Lindsay, H. D., D. J. F. Griffiths, R. Edwards, J. M. Murray, P. U. Christensen, N. Walworth, and A. M. Carr. 1998. S-phase specific activation of Cds1 kinase defines a subpathway of the checkpoint response in S. pombe. Genes Dev. 12:382–395.
  • Liu, V. F., D. Bhaumik, and T. S.-F. Wang. 1999. Mutator phenotype induced by aberrant replication. Mol. Cell. Biol. 19:1126–1135.
  • Lydall, D., and T. Weinert. 1997. G2/M checkpoint genes of Saccharomyces cerevisiae: further evidence for roles in DNA replication and/or repair. Mol. Gen. Genet. 256:638–651.
  • Lydall, D., and T. A. Weinert. 1995. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270:1488–1491.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Michelson, R., and T. Weinert. 1999. Sensor-less checkpoint activation?. Nat. Cell Biol. 1:177–178.
  • Moreno, S., A. Klar, and P. Nurse. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194:795–823.
  • Murakami, H., and H. Okayama. 1995. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374:817–819.
  • Naiki, T., T. Shimomura, T. Kondo, K. Matsumoto, and K. Sugimoto. 2000. Rfc5, in coorperation with Rad24, conrols DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:5888–5896.
  • Noskov, V. N., H. Araki, and A. Sugino. 1998. The RFC2 gene, encoding the third-largest subunit of the replication factor C complex, is required for an S-phase checkpoint in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:4914–4923.
  • O'Connell, M. J., J. M. Raleigh, H. M. Verkade, and P. Nurse. 1997. Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 16:545–554.
  • O'Connell, M. J., N. C. Walworth, and A. M. Carr. 2000. The G2-phase DNA damage checkpoint. Trends Cell Biol. 10:296–303.
  • O'Donnell, M., R. Onrust, F. B. Dean, M. Chen, and J. Hurwitz. 1993. Homology in accessory proteins of replicative polymerases—E. coli to humans. Nucleic Acids Res. 21:1–3.
  • Parker, A. E., I. V. D. Weyer, M. C. Laus, I. Oostveen, J. Yon, P. Verhasselt, and W. H. M. L. Luyten. 1998. A human homolog of the Schizosaccharomyces pombe rad1+ checkpoint gene encodes an exonuclease. J. Biol. Chem. 273:18332–18339.
  • Pasion, S. G., and S. L. Forsburg. 1999. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol. Biol. Cell 10:4043–4057.
  • Petrini, J. H. J.. 2000. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12:293–296.
  • Reynolds, N., P. A. Fantes, and S. A. MacNeill. 1999. A key role of replication factor C in DNA replication checkpoint function in fission yeast. Nucleic Acids Res. 27:462–469.
  • Rhind, N., and P. Russell. 2000. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. J. Cell Sci. 113:3889–3896.
  • Rhind, N., and P. Russell. 1998. Mitotic DNA damage and replication checkpoints in yeast. Curr. Opin. Cell Biol. 10:749–758.
  • Rhind, N., and P. Russell. 1998. The Schizosaccharomyces pombe S-phase checkpoint differentiates between different types of DNA damage. Genetics 149:1729–1737.
  • Saka, Y., P. Fantes, and M. Yanagida. 1994. Coupling of DNA replication and mitosis by fission yeast rad4/cut5. J. Cell Sci. 18 (Suppl.):57–61.
  • Shimada, M., D. Okuzaki, S. Tanaka, T. Tougan, K. K. Tamai, C. Shimoda, and H. Nojima. 1999. Rfc3 of Schizosaccharomyces pombe, a small subunit of replication factor C complex, is required for both replication and damage checkpoints. Mol. Biol. Cell 10:3991–4003.
  • Shimomura, T., S. Ando, K. Matsumoto, and K. Sugimoto. 1998. Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways. Mol. Cell. Biol. 18:5485–5491.
  • Sugimoto, K., S. Ando, T. Shimomura, and K. Matsumoto. 1997. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol. Cell. Biol. 17:5905–5914.
  • Sugimoto, K., T. Shimomura, K. Hashimoto, H. Araki, A. Sugino, and K. Matsumoto. 1996. Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Proc. Natl. Acad. Sci. USA 93:7048–7052.
  • Tan, S., and T. S.-F. Wang. 2000. Analysis of fission yeast primase defines the checkpoint responses to aberrant S phase initiation. Mol. Cell. Biol. 20:7853–7866.
  • Thelen, M. P., C. Venclovas, and K. Fidelis. 1999. A sliding clamp model for the Rad1 family of cell cycle checkpoint proteins. Cell 96:769–770.
  • Torre-Ruiz, M. A. D. L., C. M. Green, and N. F. Lowndes. 1998. Rad9 and Rad24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J. 17:2687–2698.
  • Tran, H. T., N. P. Degtyareva, N. N. Koloteva, A. Sugino, H. Msumoto, D. A. Gordenin, and M. A. Resnick. 1995. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and RAD50 and RAD52 genes. Mol. Cell. Biol. 15:5607–5617.
  • Traut, W.. 1994. The function and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur. J. Biochem. 222:9–19.
  • Turner, J., M. M. Hingorani, Z. Kelman, and M. O'Donnell. 1999. The internal working of a DNA polymerase clamp-loading machine. EMBO J. 18:771–783.
  • Uchiyama, M., I. Galli, D. J. F. Griffiths, and T. S.-F. Wang. 1997. A novel mutant allele of Schizosaccharomyces pombe rad26 defective in monitoring S phase progression to prevent premature mitosis. Mol. Cell. Biol. 17:3103–3115.
  • Venclovas, C., and M. P. Thelen. 2000. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28:2481–2493.
  • Volkmer, E., and L. M. Karnitz. 1999. Human homologs of Schizosaccharomyces pombe Rad1, Hus1, and Rad9 form a DNA damage-responsive protein complex. J. Biol. Chem. 274:567–570.
  • Waga, S., and B. Stillman. 1994. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212.
  • Waga, S., and B. Stillman. 1998. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67:721–751.
  • Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinase and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.
  • Walworth, N. C., and R. Bernards. 1996. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271:353–356.
  • Zeng, Y., K. C. Forbes, Z. Wu, S. Moreno, H. Piwnica-Worms, and T. Enoch. 1998. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395:507–510.
  • Zhang, G., E. Gibbs, Z. Kelman, M. O'Donnell, and J. Hurwitz. 1999. Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen. Proc. Natl. Acad. Sci. USA 96:1869–1874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.