153
Views
302
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Site-Specific Genomic Integration in Mammalian Cells Mediated by Phage φC31 Integrase

, , , &
Pages 3926-3934 | Received 12 Jan 2001, Accepted 23 Mar 2001, Published online: 28 Mar 2023

REFERENCES

  • Anderson, W. F.. 1998. Human gene therapy. Nature 392:25–30.
  • Capecchi, M. R.. 1989. Altering the genome by homologous recombination. Science 244:1288–1292.
  • Donoho, G. P., M. Jasin, and P. Berg. 1998. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell. Biol. 18:4070–4078.
  • Esposito, D., and J. J. Scocca. 1997. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 25:3605–3614.
  • Feng, Y. Q., J. Seibler, R. Alami, A. Eisen, K. A. Westerman, P. Leblouch, S. Fiering, and E. Bouhassira. 1999. Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J. Mol. Biol. 292:779–785.
  • Graham, F. L., J. Smiley, W. C. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–72.
  • Groth, A. C., E. C. Olivares, B. Thyagarajan, and M. P. Calos. 2000. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97:5995–6000.
  • Kolot, M., N. Silberstein, and E. Yagil. 1999. Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol. Biol. Rep. 26:207–213.
  • Kuhstoss, S., and R. N. Rao. 1991. Analysis of the integration function of the Streptomycete bacteriophage ΦC31. J. Mol. Biol. 222:897–908.
  • Landy, A.. 1989. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58:913–949.
  • Lorbach, E., N. Christ, M. Schwikardi, and P. Droge. 2000. Site-specific recombination in human cells catalyzed by phage lambda integrase mutants. J. Mol. Biol. 296:1175–1181.
  • Merrihew, R. V., R. G. Sargent, and J. H. Wilson. 1995. Efficient modification of the APRT gene by FLP/FRT site-specific targeting. Somat. Cell Mol. Genet. 21:299–307.
  • Nunes-Duby, S. E., H. J. Kwon, R. S. Tirumalai, T. Ellenberger, and A. Landy. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26:391–406.
  • Phillips, J. E., and M. P. Calos. 1999. Effects of homology length and donor vector arrangement on the efficiency of double-strand break-mediated recombination in human cells. Somat. Cell Mol. Genet. 25:91–100.
  • Rausch, H., and M. Lehmann. 1991. Structural analysis of the actinophage ΦC31 attachment site. Nucleic Acids Res. 19:5187–5189.
  • Sauer, B.. 1996. Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Res. 24:4608–4613.
  • Sauer, B.. 1994. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol. 5:521–527.
  • Sauer, B., and N. Henderson. 1990. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2:441–449.
  • Schmidt, E. E., D. S. Taylor, J. R. Prigge, S. Barnett, and M. R. Capecchi. 2000. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA 97:13702–13707.
  • Stark, W. M., M. R. Boocock, and D. J. Sherratt. 1992. Catalysis by site-specific recombinases. Trends Genet. 8:432–439.
  • Stemmer, W. P. C.. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91:10747–10751.
  • te Riele, H., E. R. Maandag, and A. Berns. 1992. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89:5128–5132.
  • Thorpe, H. M., and M. C. M. Smith. 1998. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 95:5505–5510.
  • Thorpe, H. M., S. E. Wilson, and M. C. Smith. 2000. Control of directionality in the site-specific recombination system of the Streptomyces phage φC31. Mol. Microbiol. 38:232–241.
  • Thyagarajan, B., M. J. Guimaraes, A. C. Groth, and M. P. Calos. 2000. Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54.
  • Vega, M. A.. 1991. Prospects for homologous recombination in human gene therapy. Hum. Genet. 87:245–253.
  • Wohlgemuth, J. G., S. H. Kang, G. H. Bulboaca, K. A. Nawotka, and M. P. Calos. 1996. Long-term gene expression from autonomously replicating vectors in mammalian cells. Gene Ther. 3:503–512.
  • Yant, S., L. Meuse, W. Chiu, Z. Ivics, Z. Izsvak, and M. A. Kay. 2000. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat. Genet. 25:35–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.