28
Views
97
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

In Vivo Action of the HRD Ubiquitin Ligase Complex: Mechanisms of Endoplasmic Reticulum Quality Control and Sterol Regulation

, &
Pages 4276-4291 | Received 18 Dec 2000, Accepted 23 Mar 2001, Published online: 28 Mar 2023

REFERENCES

  • Baker, R. T., and A. Varshavsky. 1991. Inhibition of the N-end rule pathway in living cells. Proc. Natl. Acad. Sci. USA 88:1090–1094.
  • Bartel, B., I. Wünning, and A. Varshavsky. 1990. The recognition component of the N-end rule pathway. EMBO J. 9:3179–3189.
  • Bays, N. W., R. G. Gardner, L. P. Seelig, C. A. Joazeiro, and R. Y. Hampton. 2000. Hrd1p is a membrane-anchored ubiquitin ligase required for endoplasmic reticulum-associated degradation. Nat. Cell Biol. 3:24–29.
  • Biederer, T., C. Volkwein, and T. Sommer. 1996. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J. 15:2069–2076.
  • Biederer, T., C. Volkwein, and T. Sommer. 1997. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806–1809.
  • Bordallo, J., R. K. Plemper, A. Finger, and D. H. Wolf. 1998. Der3p-Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9:209–222.
  • Bordallo, J., and D. H. Wolf. 1999. A RING-H2 finger motif is essential for the function of Der3/Hrd1 in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae. FEBS Lett. 448:244–248.
  • Brown, C. R., L. Q. Hong-Brown, J. Biwersi, A. S. Verkman, and W. J. Welch. 1996. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1:117–125.
  • Brown, C. R., L. Q. Hong-Brown, and W. J. Welch. 1997. Correcting temperature-sensitive protein folding defects. J. Clin. Investig. 99:1432–1444.
  • Burrows, J. A., L. K. Willis, and D. H. Perlmutter. 2000. Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc. Natl. Acad. Sci. USA 97:1796–1801.
  • Chau, V., J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda, and A. Varshavsky. 1989. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583.
  • Chun, K. T., S. Bar-Nun, and R. D. Simoni. 1990. The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum. J. Biol. Chem. 265:22004–22010.
  • Ciccarelli, E., M. A. Alonso, D. Cresteil, A. Bollen, P. Jacobs, and F. Alvarez. 1993. Intracellular retention and degradation of human mutant variant of A alpha-1 antitrypsin in stably transfected Chinese hamster ovary cell lines. Eur. J. Biochem. 213:271–276.
  • Cook, W. J., L. C. Jeffrey, E. Kasperek, and C. M. Pickart. 1994. Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J. Mol. Biol. 236:601–609.
  • Cronin, S. R., A. Khoury, D. K. Ferry, and R. Y. Hampton. 2000. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. J. Cell Biol. 148:915–924.
  • Deak, P. M., and D. H. Wolf. 2001. Membrane topology and function of der3/hrd1p as a ubiquitin-protein ligase (e3) involved in endoplasmic reticulum degradation. J. Biol. Chem. 276:10663–10669.
  • Edwards, P. A., S. F. Lan, R. D. Tanaka, and A. M. Fogelman. 1983. Mevalonolactone inhibits the rate of synthesis and enhances the rate of degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat hepatocytes. J. Biol. Chem. 258:7272–7275.
  • Fang, S., J. P. Jensen, R. L. Ludwig, K. H. Vousden, and A. M. Weissman. 2000. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275:8945–8951.
  • Feldman, R. M. R., C. C. Correll, K. B. Kaplan, and R. J. Deshaies. 1997. A complex of Cdc4p, Skp1p, and Cdc53p-Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230.
  • Finger, A., M. Knop, and D. H. Wolf. 1993. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur. J. Biochem. 218:565–574.
  • Finley, D., and V. Chau. 1991. Ubiquitination. Annu. Rev. Cell Biol. 7:25–69.
  • Friedlander, R., E. Jarosch, J. Urban, C. Volkwein, and T. Sommer. 2000. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell Biol. 2:379–384.
  • Galan, J. M., and M. Peter. 1999. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc. Natl. Acad. Sci. USA 96:9124–9129.
  • Gardner, R., S. Cronin, B. Leader, J. Rine, and R. Hampton. 1998. Sequence determinants for regulated degradation of yeast 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 9:2611–2626.
  • Gardner, R. G., and R. Y. Hampton. 1999. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J. Biol. Chem. 274:31671–31678.
  • Gardner, R. G., and R. Y. Hampton. 1999. A ‘distributed degron’ allows regulated entry into the ER degradation pathway. EMBO J. 18:5994–6004.
  • Gardner, R. G., G. M. Swarbrick, N. W. Bays, S. Cronin, S. Wilhovsky, L. Seelig, C. Kim, and R. Y. Hampton. 2000. Endoplasmic reticulum degradation requires lumen to cytosol signaling: transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151:69–82.
  • Gardner, R. G., and R. Y. Hampton. 2000. An oxysterol-derived signal for 3-hydroxy-3-methylglutaryl CoA reductase degradation in yeast. J. Biol. Chem. 276:8681–8694.
  • Goldstein, J. L., and M. S. Brown. 1990. Regulation of the mevalonate pathway. Nature 343:425–430.
  • Gonda, D. K., A. Bachmair, I. Wünning, J. W. Tobias, W. S. Lane, and A. Varshavsky. 1989. Universality and structure of the N-end rule. J. Biol. Chem. 264:16700–16712.
  • Hampton, R. Y., and J. Rine. 1994. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J. Cell Biol. 125:299–312.
  • Hampton, R. Y., R. G. Gardner, and J. Rine. 1996. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7:2029–2044.
  • Hampton, R. Y., A. Koning, R. Wright, and J. Rine. 1996. In vivo examination of membrane protein localization and degradation with green fluorescent protein. Proc. Natl. Acad. Sci. USA 93:828–833.
  • Hampton, R. Y., and H. Bhakta. 1997. Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase. Proc. Natl. Acad. Sci. USA 94:12944–12948.
  • Hein, C., J. Y. Springael, C. Volland, R. Haguenauer-Tsapis, and B. André. 1995. NP11, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18:77–87.
  • Hill, K., and A. A. Cooper. 2000. Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J. 19:550–561.
  • Hiller, M. M., A. Finger, M. Schweiger, and D. H. Wolf. 1996. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:1725–1728.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Hochstrasser, M.. 1995. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 7:215–223.
  • Hochstrasser, M.. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439.
  • Honda, R., and H. Yasuda. 1999. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18:22–27.
  • Honda, R., and H. Yasuda. 2000. Activity of MDM2, a ubiquitin ligase, towards p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19:1473–1476.
  • Huibregtse, J. M., M. Scheffner, and P. M. Howley. 1991. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10:4129–4135.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jensen, T. J., M. A. Loo, S. Pind, D. B. Williams, A. L. Goldberg, and J. R. Riordan. 1995. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135.
  • Jentsch, S.. 1992. The ubiquitin-conjugation system. Annu. Rev. Genet. 26:179–207.
  • Joazeiro, C. A. P., S. S. Wing, H. Huang, J. D. Leverson, T. Hunter, and Y. Liu. 1999. The tyrosine kinase negative regulator c-CBL as a RING-type E2-dependent ubiquitin-protein ligase. Science 286:309–312.
  • Kalies, K. U., T. A. Rapoport, and E. Hartmann. 1998. The beta subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J. Cell Biol. 141:887–894.
  • Kamura, T., D. M. Koepp, M. N. Conrad, D. Skowyra, R. J. Moreland, O. Iliopoulos, W. S. Lane, W. G. Kaelin Jr., S. J. Elledge, R. C. Conaway, J. W. Harper, and J. W. Conaway. 1999. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284:657–661.
  • Knop, M., A. Finger, T. Braun, K. Hellmuth, and D. H. Wolf. 1996. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15:753–763.
  • Kopito, R. R.. 1997. ER quality control: the cytoplasmic connection. Cell 88:427–430.
  • Kramer, K. M., D. Fesquet, A. L. Johnson, and L. H. Johnston. 1998. Budding yeast RSI1-APC2, a novel gene necessary for initiation of anaphase, encodes an APC subunit. EMBO J. 17:498–506.
  • Leverson, J. D., C. A. P. Joazeiro, A. M. Page, H. Huang, P. Hieter, and T. Hunter. 2000. The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol. Biol. Cell 11:2315–2325.
  • Levkowitz, G., H. Waterman, S. A. Ettenberg, M. Katz, A. Y. Tsygankov, I. Alroy, S. Lavi, K. Iwai, Y. Reiss, A. Ciechanover, S. Lipkowitz, and Y. Yarden. 1999. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4:1029–1040.
  • Liao, W., S.-C. Yeung, and L. Chan. 1998. Proteasome-mediated degradation of apolipoprotein B targets both nascent peptides cotranslationally before translocation and full-length apolipoprotein B after translocation into the endoplasmic reticulum. J. Biol. Chem. 273:27225–27230.
  • Lomant, A. J., and G. Fairbanks. 1976. Chemical probes of extended biological structures: synthesis and properties of the cleavable protein crosslinking reagent [35S]dithiobis(succinimidyl proprionate). J. Mol. Biol. 104:243–261.
  • Lorick, K. L., J. P. Jensen, S. Fang, A. M. Ong, S. Hatakeyama, and A. M. Weissman. 1999. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96:11364–11369.
  • Mothes, W., S. Prehn, and T. A. Rapoport. 1994. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13:3973–3982.
  • Müsch, A., M. Wiedmann, and T. A. Rapoport. 1992. Yeast Sec proteins interact with polypeptides traversing the endoplasmic reticulum membrane. Cell 69:343–352.
  • Nakanishi, M., J. L. Goldstein, and M. S. Brown. 1988. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase: mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J. Biol. Chem. 263:8929–8937.
  • Nuber, U., S. E. Schwarz, and M. Scheffner. 1998. The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur. J. Biochem. 254:643–649.
  • Ohta, T., J. J. Michel, A. J. Schottelius, and Y. Xiong. 1999. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3:535–541.
  • Patton, E. E., A. R. Willems, D. Sa, L. Kuras, D. Thomas, K. L. Craig, and M. Tyers. 1998. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12:692–705.
  • Peters, J. M.. 1999. Subunits and substrates of the anaphase-promoting complex. Exp. Cell Res. 248:339–349.
  • Pilon, M., K. Römisch, D. Quach, and R. Schekman. 1998. Sec61p serves multiple roles in secretory precursor binding and translocation into the endoplasmic reticulum membrane. Mol. Biol. Cell 9:3455–3473.
  • Plemper, R. K., R. Egner, K. Kuchler, and D. H. Wolf. 1998. Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J. Biol. Chem. 273:32848–32856.
  • Plemper, R. K., J. Bordallo, P. M. Deak, C. Taxis, R. Hitt, and D. H. Wolf. 1999. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell Sci. 112:4123–4134.
  • Qu, D., J. H. Teckman, S. Omura, and D. H. Perlmutter. 1996. Degradation of a mutant secretory protein, alpha-1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 271:22791–22795.
  • Ravid, T., R. Doolman, R. Avner, D. Harats, and J. Roitelman. 2000. The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian HMG-CoA reductase. J. Biol. Chem. 275:35840–35847.
  • Reiss, Y., D. Kaim, and A. Hershko. 1988. Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. J. Biol. Chem. 263:2693–2698.
  • Saito, Y., T. Yamanushi, T. Oka, and A. Nakano. 1999. Identification of SEC12, SED4, truncated SEC16, and EKS1/HRD3 as multicopy suppressors of ts mutants of Sar1 GTPase. J. Biochem. 125:130–137.
  • Sanders, S. L., K. M. Whitfield, J. P. Vogel, M. D. Rose, and R. W. Schekman. 1992. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69:353–365.
  • Sato, S., C. L. Ward, M. E. Krouse, J. J. Wine, and R. R. Kopito. 1996. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271:635–638.
  • Scheffner, M., J. M. Huibregtse, R. D. Vierstra, and P. M. Howley. 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505.
  • Scheffner, M., U. Nuber, and J. M. Huibregtse. 1995. Protein ubiquitination involving an E1–E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83.
  • Seol, J. H., R. M. Feldman, W. Zachariae, A. Shevchenko, C. C. Correll, S. Lyapina, Y. Chi, M. Galova, J. Claypool, S. Sandmeyer, K. Nasmyth, and R. J. Deshaies. 1999. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13:1614–1626.
  • Skowyra, D., K. L. Craig, M. Tyers, S. J. Elledge, and J. W. Harper. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219.
  • Skowyra, D., D. M. Koepp, T. Kamura, M. N. Conrad, R. C. Conaway, J. W. Conaway, S. J. Elledge, and J. W. Harper. 1999. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx. Science 284:662–665.
  • Thrower, J. S., L. Hoffman, M. Rechsteiner, and C. M. Pickart. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19:94–102.
  • Travers, K. J., C. K. Patil, L. Wodicka, D. J. Lockhart, J. S. Weissman, and P. Walter. 2000. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258.
  • Varshavsky, A.. 1991. Naming a targeting signal. Cell 64:13–15.
  • Ward, C. L., S. Omura, and R. R. Kopito. 1995. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127.
  • Wei, X., R. Eisman, J. Xu, A. D. Harsch, A. E. Mulberg, C. L. Bevins, M. C. Glick, and T. F. Scanlin. 1996. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells. J. Cell. Physiol. 168:373–384.
  • Wickner, S., M. R. Maurizi, and S. Gottesman. 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893.
  • Wilhovsky, S., R. Gardner, and R. Hampton. 2000. HRD gene dependence of ER-associated degradation. Mol. Biol. Cell 11:1697–1708.
  • Xie, Y., and A. Varshavsky. 1999. The E2–E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18:6832–6844.
  • Yang, M., S. Omura, J. S. Bonifacino, and A. M. Weissman. 1998. Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J. Exp. Med. 187:835–846.
  • Yu, H., G. Kaung, S. Kobayashi, and R. R. Kopito. 1997. Cytosolic degradation of T-cell receptor alpha chains by the proteasome. J. Biol. Chem. 272:20800–20804.
  • Yu, H., J. M. Peters, R. W. King, A. M. Page, P. Hieter, and M. W. Kirschner. 1998. Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science 279:1219–1222.
  • Zachariae, W., A. Shevchenko, P. D. Andrews, R. Ciosk, M. Galova, M. J. Stark, and K. Nasmyth. 1998. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279:1216–1219.
  • Zheng, F., N. Kartner, and G. L. Lukacs. 1998. Limited proteolysis as a probe for arrested conformational maturation of DELTA-F508 CFTR. Nat. Struct. Biol. 5:180–183.
  • Zheng, N., P. Wang, P. D. Jeffrey, and N. P. Pavletich. 2000. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539.
  • Zhou, M., E. A. Fisher, and H. N. Ginsberg. 1998. Regulated co-translational ubiquitination of apolipoprotein B100. A new paradigm for proteasomal degradation of a secretory protein. J. Biol. Chem. 273:24649–24653.
  • Zhou, M., and R. Schekman. 1999. The engagement of Sec61p in the ER dislocation process. Mol. Cell 4:925–934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.