5
Views
16
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

RAG Transposase Can Capture and Commit to Target DNA before or after Donor Cleavage

, , &
Pages 4302-4310 | Received 16 Feb 2001, Accepted 04 Apr 2001, Published online: 28 Mar 2023

REFERENCES

  • Agrawal, A., Q. M. Eastman, and D. G. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751.
  • Agrawal, A., and D. G. Schatz. 1997. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89:43–53.
  • Akamatsu, Y., and M. A. Oettinger. 1998. Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequences. Mol. Cell. Biol. 18:4670–4678.
  • Athma, P., E. Grotewold, and T. Peterson. 1992. Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131:199–209.
  • Bainton, R., P. Gamas, and N. L. Craig. 1991. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 65:805–816.
  • Bainton, R. J., K. M. Kubo, J. N. Feng, and N. L. Craig. 1993. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72:931–943.
  • Baker, T. A., M. Mizuuchi, and K. Mizuuchi. 1991. MuB protein allosterically activates strand transfer by the transposase of phage Mu. Cell 65:1003–1013.
  • Craig, N. L.. 1997. Target site selection in transposition. Annu. Rev. Biochem. 66:437–474.
  • Eastman, Q. M., I. J. Villey, and D. G. Schatz. 1999. Detection of RAG protein-V(D)J recombination signal interactions near the site of DNA cleavage by UV cross-linking. Mol. Cell. Biol. 19:3788–3797.
  • Fugmann, S. D., A. I. Lee, P. E. Shockett, I. J. Villey, and D. G. Schatz. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18:495–527.
  • Fugmann, S. D., I. J. Villey, L. M. Ptaszek, and D. G. Schatz. 2000. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5:97–107.
  • Hiom, K., and M. Gellert. 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88:65–72.
  • Hiom, K., and M. Gellert. 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 7:1011–1019.
  • Hiom, K., M. Melek, and M. Gellert. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470.
  • Jack, W. E., B. J. Terry, and P. Modrich. 1982. Involvement of outside DNA sequences in the major kinetic path by which EcoRI endonuclease locates and leaves its recognition sequence. Proc. Natl. Acad. Sci. USA 79:4010–4014.
  • Junop, M. S., and D. B. Haniford. 1997. Factors responsible for target site selection in Tn10 transposition: a role for the DDE motif in target DNA capture. EMBO J. 16:2646–2655.
  • Kennedy, A. K., A. Guhathakurta, N. Kleckner, and D. B. Haniford. 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95:125–134.
  • Kim, D. R., Y. Dai, C. L. Mundy, W. Yang, and M. A. Oettinger. 1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13:3070–3080.
  • Kim, D. R., and M. A. Oettinger. 1998. Functional analysis of coordinated cleavage in V(D)J recombination. Mol. Cell. Biol. 18:4679–4688.
  • Kozubek, S., E. Lukasova, L. Ryznar, M. Kozubek, A. Liskova, R. D. Govorun, E. A. Krasavin, and G. Horneck. 1997. Distribution of ABL and BCR genes in cell nuclei of normal and irradiated lymphocytes. Blood 89:4537–4545.
  • Landree, M. A., J. A. Wibbenmeyer, and D. B. Roth. 1999. Mutational analysis of RAG-1 and RAG-2 identifies three active site amino acids in RAG-1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13:3059–3069.
  • Lewis, S. M.. 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56:27–150.
  • Lewis, S. M., and G. E. Wu. 2000. The old and the restless. J. Exp. Med. 191:1631–1636.
  • Machida, C., H. Onouchi, J. Koizumi, S. Hamada, E. Semiarti, S. Torikai, and Y. Machida. 1997. Characterization of the transposition pattern of the Ac element in Arabidopsis thaliana using endonuclease I-SceI. Proc. Natl. Acad. Sci. USA 94:8675–8680.
  • McBlane, J. F., D. C. van Gent, D. A. Ramsden, C. Romeo, C. A. Cuomo, M. Gellert, and M. A. Oettinger. 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395.
  • Melek, M., and M. Gellert. 2000. RAG1/2-mediated resolution of transposition intermediates: two pathways and possible consequences. Cell 101:625–633.
  • Naigamwalla, D. Z., and G. Chaconas. 1997. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J. 16:5227–5234.
  • Nikiforova, M. N., J. R. Stringer, R. Blough, M. Medvedovic, J. A. Fagin, and Y. E. Nikiforov. 2000. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290:138–141.
  • Oettinger, M. A., D. G. Schatz, C. Gorka, and D. Baltimore. 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523.
  • Ramsden, D. A., and M. Gellert. 1995. Formation and resolution of double-strand break intermediates in V(D)J rearrangement. Genes Dev. 9:2409–2420.
  • Roth, D. B.. 2000. From lymphocytes to sharks: V(D)J recombinase moves to the germline. Genome Biol. 1:1014.1–1014.4.
  • Roth, D. B., and N. L. Craig. 1998. VDJ recombination: a transposase goes to work. Cell 94:411–414.
  • Roth, D. B., P. B. Nakajima, J. P. Menetski, M. J. Bosma, and M. Gellert. 1992. V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor δ rearrangement signals. Cell 69:41–53.
  • Sakai, J., and N. Kleckner. 1997. The Tn10 synaptic complex can capture a target DNA only after transposon excision. Cell 89:205–214.
  • Sakano, H., K. Huppi, G. Heinrich, and S. Tonegawa. 1979. Sequences at the somatic recombination sites of immunoglobulin light chain genes. Nature 280:288–294.
  • Sawchuk, D. J., F. Weis-Garcia, S. Malik, E. Besmer, M. Bustin, M. C. Nussenzweig, and P. Cortes. 1997. V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins. J. Exp. Med. 185:2025–2031.
  • Schultz, H. Y., M. A. Landree, S. B. Kale, and D. B. Roth. 2001. Joining-deficient RAG-1 mutants block V(D)J recombination in vivo. Mol. Cell 7:65
  • Spanopoulou, E., F. Zaitseva, F.-H. Wang, S. Santagata, D. Baltimore, and G. Panayotou. 1996. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87:263–276.
  • Thompson, C. B.. 1995. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3:531–539.
  • Tower, J., G. H. Karpen, N. Craig, and A. C. Spradling. 1993. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133:347–359.
  • van Gent, D. C., J. F. McBlane, D. A. Ramsden, M. J. Sadofsky, J. E. Hesse, and M. Gellert. 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81:925–934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.