66
Views
130
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Maf1p, a Negative Effector of RNA Polymerase III in Saccharomyces cerevisiae

, , , , , , , & show all
Pages 5031-5040 | Received 01 Feb 2001, Accepted 24 Apr 2001, Published online: 28 Mar 2023

REFERENCES

  • Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.
  • Arrebola, R., N. Manaud, S. Rozenfeld, M. C. Marsolier, O. Lefebvre, C. Carles, P. Thuriaux, C. Conesa, and A. Sentenac. 1998. Tau91, an essential subunit of yeast transcription factor IIIC, cooperates with tau138 in DNA binding. Mol. Cell. Biol. 18:1–9.
  • Benko, A. L., G. Vaduva, N. C. Martin, and A. K. Hopper. 2000. Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Proc. Natl. Acad. Sci. USA 97:61–66.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine 5′ phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Boguta, M., L. A. Hunter, E. C. Gillman, N. C. Martin, and A. K. Hopper. 1994. Subcellular locations of MOD5 proteins: mapping of the sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms commingle in the cytosol. Mol. Cell. Biol. 14:2298–2306.
  • Boguta, M., K. Czerska, and T. Zoladek. 1997. Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae. Gene 185:291–296.
  • Cairns, C. A., and R. J. White. 1998. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 17:3112–3123.
  • Chedin, S., M. L. Ferri, G. Peyroche, J. C. Andrau, S. Jourdain, O. Lefebvre, M. Werner, C. Carl, and A. Sentenac. 1998. The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation. Cold Spring Harbor Symp. Quant. Biol. 63:381–389.
  • Chesnokov, I., W. M. Chu, M. R. Botchan, and C. W. Schmid. 1996. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol. Cell. Biol. 16:7084–7088.
  • Chu, W. M., Z. Wang, R. G. Roeder, and C. W. Schmid. 1997. RNA polymerase III transcription repressed by Rb through its interactions with TFIII and TFIIIC2. J. Biol. Chem. 272:14755–14761.
  • Clarke, E. M., C. L. Peterson, A. V. Brainard, and D. L. Riggs. 1996. Regulation of the RNA polymerase I and III transcription systems in response to growth conditions. J. Biol. Chem. 271:22189–22195.
  • Cullin, C., and L. Minvielle-Sebastia. 1994. Multipurpose vectors designed for the fast generation of N- or C-terminal epitope-tagged proteins. Yeast 10:105–112.
  • Dechampesme, A. M., O. Koroleva, I. Leger-Silvestre, N. Gas, and S. Camier. 1999. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J. Cell Biol. 145:1369–1380.
  • Dieci, G., S. Herman-Le-Denmat, E. L. Lukhtanov, P. Thuriaux, M. Werner, and A. Sentenac. 1995. A universally conserved region of the largest subunit participates in the active site of RNA polymerase III. EMBO J. 14:3766–3776.
  • Ferri, M. L., G. Peyroche, M. Siaut, O. Lefebvre, C. Carles, C. Conesa, and A. Sentenac. 2000. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol. Cell. Biol. 20:488–495.
  • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Gottesfeld, J. M., V. J. Wolf, T. Dang, D. J. Forbes, and P. Hartl. 1994. Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component. Science 263:81–84.
  • Gudenus, R., S. Mariotte, A. Moenne, A. Ruet, S. Memet, J. M. Buhler, A. Sentenac, and P. Thuriaux. 1988. Conditional mutants of RPC160, the gene encoding the largest subunit of RNA polymerase C in Saccharomyces cerevisiae. Genetics 119:517–526.
  • Henikoff, S., and J. G. Henikoff. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89:10915–10919.
  • Hoeffler, W. K., R. Kovelman, and R. G. Roeder. 1988. Activation of transcription factor IIIC by the adenovirus E1A protein. Cell 53:907–920.
  • Hofmann, K., P. Bucher, L. Falquet, and A. Bairoch. 1999. The PROSITE database, its status in 1999. Nucleic Acids Res. 27:215–219.
  • Hopper, A. K.. 1990. Genetic methods for study of trans-acting genes involved in processing of precursors to yeast cytoplasmic transfer RNAs. Methods Enzymol. 181:400–420.
  • Huet, J., N. Manaud, G. Dieci, G. Peyroche, C. Conesa, O. Lefebvre, A. Ruet, M. Riva, and A. Sentenac. 1996. RNA polymerase III and class III transcription factors from Saccharomyces cerevisiae. Methods Enzymol. 273:249–267.
  • Hsieh, Y. J., Z. Wang, R. Kovelman, and R. G. Roeder. 1999. Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III. Mol. Cell. Biol. 19:4944–4952.
  • Huibregtse, J. M., and D. R. Engelke. 1989. Genomic footprinting of a yeast tRNA gene reveals stable complexes over the 5′-flanking region. Mol. Cell. Biol. 9:3244–3252.
  • Kaiser, C., S. Michaelis, and A. Mitchel. 1994. Yeast RNA isolation: methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Kief, D. R., and J. R. Warner. 1981. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:1007–1015.
  • Larminie, C. G., C. A. Cairns, R. Mital, K. T. Martin, K. Kouzarides, S. P. Jackson, and R. J. White. 1997. Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO J. 16:2061–2071.
  • Larminie, C. G., H. M. Alzuherri, C. A. Cairns, A. McLees, and R. J. White. 1998. Transcription by RNA polymerases I and III: a potential link between cell growth, protein synthesis and the retinoblastoma protein. J. Mol. Med. 76:94–103.
  • Li, Y., R. D. Moir, I. K. Sethy-Coraci, J. R. Warner, and I. M. Willis. 2000. Repression of ribosome and tRNA synthesis in secretion-defective cells is signaled by a novel branch of the cell integrity pathway. Mol. Cell. Biol. 11:3843–3851.
  • Longtine, M. S., A. McKenzie III, D. J. Demarini, N. G. Shah, A. Wach, A. Brachat, P. Philippsen, and J. R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Manaud, N., R. Arrebola, B. Buffin-Meyer, O. Lefebvre, H. Voss, M. Riva, C. Conesa, and A. Sentenac. 1998. A chimeric subunit of yeast transcription factor IIIC forms a subcomplex with tau95. Mol. Cell. Biol. 18:3191–3200.
  • Mortimer, R. K., D. Schild, C. R. Contopoulou, and J. A. Kans. 1989. Genetic map of Saccharomyces cerevisiae, 10th. Yeast 5:321–403.
  • Murawski, M., B. Szczesniak, T. Zoladek, A. K. Hopper, N. C. Martin, and M. Boguta. 1994. maf1 mutation alters the subcellular localization of the Mod5 protein in yeast. Acta Biochim. Pol. 41:441–448.
  • Musters, W., J. Knol, P. Maas, A. F. Dekker, and H. Van Heerikhuizen. 1989. Linker scanning of the yeast RNA polymerase I promoter. Nucleic Acids Res. 17:9661–9678.
  • Oliver, S. G., and C. S. McLaughlin. 1977. The regulation of RNA synthesis in yeast. I: Starvation experiments. Mol. Gen. Genet. 154:145–153.
  • Pringle, J. R., A. E. Adams, D. R. Drubin, and B. K. Haarer. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194:565–602.
  • Riggs, D. L., and M. Nomura. 1990. Specific transcription of Saccharomyces cerevisiae 35 S rDNA by RNA polymerase I in vitro. J. Biol. Chem. 265:7596–7603.
  • Sethy, I., R. D. Moir, M. Librizzi, and I. M. Willis. 1995. In vitro evidence for growth regulation of tRNA gene transcription in yeast. A role for transcription factor (TF) IIIB70 and TFIIIC. J. Biol. Chem. 270:28463–28470.
  • Sherman, F., and P. Wakem. 1991. Mapping of the yeast genes. Methods Enzymol. 194:38–56.
  • Shulman, R. W., C. E. Sripati, and J. R. Warner. 1977. Noncoordinated transcription in the absence of protein synthesis in yeast. J. Biol. Chem. 252:1344–1349.
  • Sinn, E., Z. Wang, R. Kovelman, and R. G. Roeder. 1995. Cloning and characterization of a TFIIIC2 subunit (TFIIIC beta) whose presence correlates with activation of RNA polymerase III-mediated transcription by adenovirus E1A expression and serum factors. Genes Dev. 9:675–685.
  • Stettler, S., S. Mariotte, M. Riva, A. Sentenac, and P. Thuriaux. 1992. An essential and specific subunit of RNA polymerase III (C) is encoded by gene RPC34 in Saccharomyces cerevisiae. J. Biol. Chem. 267:21390–21395.
  • Teichmann, M., G. Dieci, J. Huet, J. Ruth, A. Sentenac, and K. H. Seifart. 1997. Functional interchangeability of TFIIIB components from yeast and human cells in vitro. EMBO J. 16:4708–4716.
  • Thompson, J. D., T. J. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.
  • Tower, J., and B. Sollner-Webb. 1988. Polymerase III transcription factor B activity is reduced in extracts of growth-restricted cells. Mol. Cell. Biol. 8:1001–1005.
  • Tyers, M., G. Tokiwa, and B. Futcher. 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12:1955–1968.
  • Waldron, C.. 1977. Synthesis of ribosomal and transfer ribonucleic acids in yeast during a nutritional shift-up. J. Gen. Microbiol. 98:215–221.
  • Waldron, C., and F. Lacroute. 1975. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122:855–865.
  • Wang, Z., T. Luo, and R. G. Roeder. 1997. Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev. 11:2371–2382.
  • Wang, Z., and R. G. Roeder. 1997. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev. 11:1315–1326.
  • White, R. J., D. Stott, and P. W. Rigby. 1989. Regulation of RNA polymerase III transcription in response to F9 embryonal carcinoma stem cell differentiation. Cell 59:1081–1092.
  • White, R. J., D. Trouche, K. Martin, S. P. Jackson, and T. Kouzarides. 1996. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382:88–90.
  • White, R. J.. 1997. Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control?. Trends Biochem. Sci. 22:77–80.
  • White, R. J.. 1998. RNA polymerase III transcription. Springer-Verlag/ R. G. Landes Co., New York, N.Y
  • Zoladek, T., G. Vaduva, L. A. Hunter, M. Boguta, B. D. Go, N. C. Martin, and A. K. Hopper. 1995. Mutants altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3′ ends and/or protein synthesis in mitochondrial delivery. Mol. Cell. Biol. 15:6884–6894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.