10
Views
53
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Mitotic Phosphorylation Prevents the Binding of HMGN Proteins to Chromatin

, , , , , & show all
Pages 5169-5178 | Received 23 Feb 2001, Accepted 26 Apr 2001, Published online: 28 Mar 2023

REFERENCES

  • Alfonso, P. J., M. P. Crippa, J. J. Hayes, and M. Bustin. 1994. The footprint of chromosomal proteins HMG-14 and HMG-17 on chromatin subunits. J. Mol. Biol. 236:189–198.
  • Barratt, M. J., C. A. Hazzalin, N. Zhelev, and L. C. Mahadevan. 1994. A mitogen- and anisomycin-stimulated kinase phosphorylates HMG-14 in its basic amino-terminal domain in vivo and on isolated mononucleosomes. EMBO J. 13:4524–4535.
  • Bergel, M., J. E. Herrera, B. J. Thatcher, M. Prymakowska-Bosak, A. Vassilev, Y. Nakatani, B. Martin, and M. Bustin. 2000. Acetylation of novel sites in the nucleosomal binding domain of chromosomal protein HMG-14 by p300 alters its interaction with nucleosomes. J. Biol. Chem. 275:11514–11520.
  • Brawley, J. V., and H. G. Martinson. 1992. HMG proteins 14 and 17 become cross-linked to the globular domain of histone H3 near the nucleosome core particle dyad. Biochemistry 31:364–370.
  • Bustin, M.. 1999. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 19:5237–5246.
  • Bustin, M., P. S. Becerra, M. P. Crippa, D. A. Lehn, J. M. Pash, and J. Shiloach. 1991. Recombinant human chromosomal proteins HMG-14 and HMG-17. Nucleic Acids Res. 19:3115–3121.
  • Bustin, M., and N. Neihart. 1979. Antibodies against chromosomal HMG protein stain the cytoplasm of mammalian cells. Cell 16:181–189.
  • Bustin, M., and R. Reeves. 1996. High mobility group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 54:35–100.
  • Bustin, M., N. Soares, D. Landsman, T. Srikantha, and J. M. Collins. 1987. Cell cycle regulated synthesis of an abundant transcript for human chromosomal protein HMG-17. Nucleic Acids Res. 15:3549–3561.
  • Bustin, M., L. Trieschmann, and Y. V. Postnikov. 1995. The HMG-14/-17 chromosomal protein family: architectural elements that enhance transcription from chromatin templates. Semin. Cell Biol. 6:247–255.
  • Cheung, P., C. D. Allis, and P. Sassone-Corsi. 2000. Signaling to chromatin through histone modifications. Cell 103:263–271.
  • Cheung, P., K. G. Tanner, W. L. Cheung, P. Sassone-Corsi, J. M. Denu, and C. D. Allis. 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5:905–915.
  • Clayton, A. L., S. Rose, M. J. Barratt, and L. C. Mahadevan. 2000. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19:3714–3726.
  • Collas, P., K. Le Guellec, and K. Tasken. 1999. The A-kinase-anchoring protein AKAP95 is a multivalent protein with a key role in chromatin condensation at mitosis. J. Cell Biol. 147:1167–1180.
  • Cook, G. R., M. Minch, G. P. Schroth, and E. M. Bradbury. 1989. Analysis of the binding of high mobility group protein 17 to the nucleosome core particle by 1H NMR spectroscopy. J. Biol. Chem. 264:1799–1803.
  • Cook, G. R., P. Yau, H. Yasuda, R. R. Traut, and E. M. Bradbury. 1986. High mobility group protein 17 cross-links primarily to histone H2A in the reconstituted HMG 17-nucleosome core particle complex. J. Biol. Chem. 261:16185–16190.
  • Crippa, M. P., P. J. Alfonso, and M. Bustin. 1992. Nucleosome core binding region of chromosomal protein HMG-17 acts as an independent functional domain. J. Mol. Biol. 228:442–449.
  • de la Barre, A. E., V. Gerson, S. Gout, M. Creaven, C. D. Allis, and S. Dimitrov. 2000. Core histone N-termini play an essential role in mitotic chromosome condensation. EMBO J. 19:379–391.
  • Ding, H. F., M. Bustin, and U. Hansen. 1997. Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region of chromosomal protein HMG-14. Mol. Cell. Biol. 17:5843–5855.
  • Einck, L., and M. Bustin. 1985. The intracellular distribution and function of the high mobility group chromosomal proteins. Exp. Cell Res. 156:295–310.
  • Falciola, L., F. Spada, S. Calogero, G. Langst, R. Viot, I. Grummt, and M. Bianchi. 1997. High mobility group 1 protein is not stably associated with the chromosomes of somatic cells. J. Cell Biol. 137:19–26.
  • Glover, D. M., H. Ohkura, and A. Tavares. 1996. Polo kinase: the choreographer of the mitotic stage?. J. Cell Biol. 135:1681–1684.
  • Goto, H., Y. Tomono, K. Ajiro, H. Kosako, M. Fujita, M. Sakurai, K. Okawa, A. Iwamatsu, T. Okigaki, T. Takahashi, and M. Inagaki. 1999. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem. 274:25543–25549.
  • Gottesfeld, J. M., and D. J. Forbes. 1997. Mitotic repression of the transcriptional machinery. Trends Biochem. Sci. 22:197–202.
  • Herrera, J., K. Sakaguchi, M. Bergel, L. Trieschmann, Y. Nakatani, and M. Bustin. 1999. Specific acetylation of chromosomal protein HMG-17 by P/CAF alters its interaction with nucleosomes. Mol. Cell Biol. 19:3466–3473.
  • Hirano, T., R. Kobayashi, and M. Hirano. 1997. Condensins, chromosome condensation protein complexes containing XCAP- C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521.
  • Hock, R., U. Scheer, and M. Bustin. 1998. Chromosomal proteins HMG-14 and HMG-17 are released from mitotic chromosomes and imported into the nucleus by active transport. J. Cell Biol. 143:1427–1436.
  • Hock, R., F. Wilde, U. Scheer, and M. Bustin. 1998. Dynamic relocation of chromosomal protein HMG-17 in the nucleus is dependent on transcriptional activity. EMBO J. 17:6992–7001.
  • Isackson, P., J. Bidney, G. Reeck, N. Neihart, and M. Bustin. 1980. High mobility group chromosomal protein isolated from nuclei and cytosol of cultured hepatoma cells are similar. Biochemistry 19:4466–4471.
  • Johns, E. W.. 1982. The HMG chromosomal proteins. Academic Press, London, England
  • Johnson, T. C., and J. J. Holland. 1965. Ribonucleic acid and protein synthesis in mitotic HeLa cells. J. Cell Biol. 27:565–574.
  • Kimura, K., V. V. Rybenkov, N. J. Crisona, T. Hirano, and N. R. Cozzarelli. 1999. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98:239–248.
  • Knehr, M., M. Poppe, M. Enulescu, W. Eickelbaum, M. Stoehr, D. Schroeter, and N. Paweletz. 1995. A critical appraisal of synchronization methods applied to achieve maximal enrichment of HeLa cells in specific cell cycle phases. Exp. Cell Res. 217:546–553.
  • Krebs, J., C. Fry, M. Samuels, and C. Peterson. 2000. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 102:587–598.
  • Kuhn, A., A. Vente, M. Doree, and I. Grummt. 1998. Mitotic phosphorylation of the TBP-containing factor SL1 represses ribosomal gene transcription. J. Mol. Biol. 284:1–5.
  • Lee, J. W., H. S. Choi, J. Gyuris, R. Brent, and D. D. Moore. 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with thyroid hormone receptor. Mol. Endocrinol. 9:243–254.
  • Lennox, R. W., and L. H. Cohen. 1989. Analysis of histone subtypes and their modified forms by polyacrylamide gel electrophoresis. Methods Enzymol. 170:532–549.
  • Lo, W. S., R. C. Trievel, J. R. Rojas, L. Duggan, J. Y. Hsu, C. D. Allis, R. Marmorstein, and S. L. Berger. 2000. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gen5-mediated acetylation at lysine 14. Mol. Cell 5:917–926.
  • Louie, D. F., K. K. Gloor, S. C. Galasinski, K. A. Resing, and N. G. Ahn. 2000. Phosphorylation and subcellular redistribution of high mobility group proteins 14 and 17, analyzed by mass spectrometry. Protein Sci. 9:170–179.
  • Lund, T., and K. Berg. 1991. Metaphase-specific phosphorylations weaken the association between chromosomal proteins HMG 14 and 17, and DNA. FEBS Lett. 289:113–116.
  • Martinez-Balbas, M. A., A. Dey, S. K. Rabindran, K. Ozato, and C. Wu. 1995. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38.
  • Meijer, L., A. C. Ostvold, S. I. Walass, T. Lund, and S. G. Laland. 1991. High-mobility-group proteins P1, I and Y as substrates of the M-phase-specific p34cdc2/cyclincdc 13 kinase. Eur. J. Biochem. 196:557–567.
  • Muchardt, C., J. C. Reyes, B. Bourachot, E. Leguoy, and M. Yaniv. 1996. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15:3394–3402.
  • Palvimo, J., and P. H. Maenpaa. 1988. Binding of high-mobility-group proteins HMG 14 and HMG 17 to DNA and histone H1 as influenced by phosphorylation. Biochim. Biophys. Acta 952:172–180.
  • Palvimo, J., A. Mahonen, and P. H. Maenpaa. 1987. Phosphorylation of high-mobility-group chromatin proteins by protein kinase C from rat brain. Biochim. Biophys. Acta 931:376–383.
  • Phair, R. D., and T. Misteli. 2000. High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609.
  • Postnikov, Y. V., J. E. Herrera, R. Hock, U. Scheer, and M. Bustin. 1997. Clusters of nucleosomes containing chromosomal protein HMG-17 in chromatin. J. Mol. Biol. 274:454–465.
  • Postnikov, Y. V., D. A. Lehn, R. C. Robinson, F. K. Friedman, J. Shiloach, and M. Bustin. 1994. The cooperative binding of chromosomal protein HMG-14 to nucleosome cores is reduced by single point mutations in the nucleosomal binding domain. Nucleic Acids Res. 22:4520–4526.
  • Postnikov, Y. V., L. Trieschmann, A. Rickers, and M. Bustin. 1995. Homodimers of chromosomal proteins HMG-14 and HMG-17 in nucleosome cores. J. Mol. Biol. 252:423–432.
  • Segil, N., M. Geurmah, A. Hoffman, R. Roeder, and N. Heintz. 1996. Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev. 10:2389–2400.
  • Segil, N., S. B. Roberts, and N. Heintz. 1991. Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science 254:1814–1816.
  • Shirakawa, H., D. Landsman, Y. V. Postnikov, and M. Bustin. 2000. NBP-45, a novel nucleosomal binding protein with a tissue-specific and developmentally regulated expression. J. Biol. Chem. 275:6368–6374.
  • Shirakawa, H., T. Tanigawa, S. Sugyama, M. Kobayashi, T. Terashima, K. Yoshida, T. Arai, and M. Yoshida. 1997. Nuclear accumulation of HMG2 is mediated by a basic region interspaced with a long DNA-binding sequence, and retention within the nucleus requires the acidic carboxyl terminus. Biochemistry 36:5992–5999.
  • Sif, S., P. T. Stukenberg, M. W. Kirschner, and R. E. Kingston. 1998. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12:2842–2851.
  • Spaulding, S. W., N. W. Fucile, D. P. Bofinger, and L. G. Sheflin. 1991. Cyclic adenosine 3′,5′-monophosphate-dependent phosphorylation of HMG 14 inhibits its interactions with nucleosomes. Mol. Endocrinol. 5:42–50.
  • Sterner, R., G. Vidali, and V. G. Allfrey. 1979. Studies on the acetylation and deacetylation of HMG proteins. J. Biol. Chem. 254:11577–11583.
  • Sterner, R., G. Vidali, and V. G. Allfrey. 1981. Studies on the acetylation and deacetylation of HMG proteins: identification of the sites of acetylation of HMG-14 and HMG-17. J. Biol. Chem. 256:8892–8895.
  • Strunnikov, A. V., and R. Jessberger. 1999. Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur. J. Biochem. 263:6–13.
  • Thomson, S., A. L. Clayton, C. A. Hazzalin, S. Rose, M. J. Barratt, and L. C. Mahadevan. 1999. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18:4779–4793.
  • Trieschmann, L., B. Martin, and M. Bustin. 1998. The chromatin unfolding domain of chromosomal protein HMG-14 targets the N-terminal tail of histone H3 in nucleosomes. Proc. Natl. Acad. Sci. USA 95:5468–5473.
  • Walton, G. M., J. Spiess, and G. N. Gill. 1982. Phosphorylation of high mobility group 14 protein by cyclic nucleotide-dependent protein kinases. J. Biol. Chem. 257:4661–4668.
  • Wei, Y., L. Yu, J. Bowen, M. A. Gorovsky, and C. D. Allis. 1999. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97:99–109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.