28
Views
87
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Conformational Switch and Role of Phosphorylation in PAK Activation

, , , , , , & show all
Pages 5179-5189 | Received 20 Sep 2000, Accepted 27 Apr 2001, Published online: 28 Mar 2023

REFERENCES

  • Abdul-Manan, N., B. Aghazadeh, G. A. Liu, A. Majumdar, O. Ouerfelli, K. A. Siminovitch, and M. K. Rosen. 1999. Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott-Aldrich syndrome’ protein. Nature 399:379–383.
  • Bagrodia, S., and R. A. Cerione. 1999. PAK to the future. Trends Cell Biol. 9:350–355.
  • Benner, G. E., P. B. Dennis, and R. A. Masaracchia. 1995. Activation of an s6/h4 kinase (Pak 65) from human placenta by intramolecular and intermolecular autophosphorylation. J. Biol. Chem. 270:21121–21128.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127.
  • Brown, J. L., L. Stowers, M. Baer, J. Trejo, S. Coughlin, and J. Chant. 1996. Human STE20 homologue HPAK1 links GTPases to the JNK map kinase pathway. Curr. Biol. 6:598–605.
  • Burbelo, P. D., and A. Hall. 1995. 14-3-3 proteins. Hot numbers in signal transduction. Curr. Biol. 5:95–96.
  • Chong, C., L. L. L. Tan, and E. Manser. 2001. The mechanism of PAK activation: autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem. 276:17347–17353.
  • Daniels, R. H., and G. M. Bokoch. 1999. p21-activated protein kinase: a crucial component of morphological signaling?. Trends Biochem. Sci. 24:350–355.
  • Gatti, A., Z. D. Huang, P. T. Tuazon, and J. A. Traugh. 1999. Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J. Biol. Chem. 274:8022–8028.
  • Geyer, M., C. Herrmann, S. Wohlgemuth, A. Wittinghofer, and H. R. Kalbitzer. 1997. Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat. Struct. Biol. 4:694–699.
  • Gizachew, D., W. Guo, K. K. Chohan, M. J. Sutcliffe, and R. E. Oswald. 2000. Structure of the complex of Cdc42Hs with a peptide derived from P-21 activated kinase. Biochemistry 39:3963–3971.
  • Hoffman, G. R., and R. A. Cerione. 2000. Flipping the switch: the structural basis for signaling through the CRIB motif. Cell 102:403–406.
  • Hunter, T.. 1987. A thousand and one protein kinases. Cell 50:823–829.
  • Hunter, T.. 2000. Signaling—2000 and beyond. Cell 100:113–127.
  • Kim, A. S., L. T. Kakalis, M. Abdul-Manan, G. A. Liu, and M. K. Rosen. 2000. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158.
  • Kobe, B., and B. E. Kemp. 1999. Active site-directed protein regulation. Nature 402:373–376.
  • Lee, N., H. Macdonald, C. Reinhard, R. Halenbeck, A. Roulston, T. Shi, and L. T. Williams. 1997. Activation of hpak65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc. Natl. Acad. Sci. USA 94:13642–13647.
  • Lee, S., R. Escalante, and R. A. Firtel. 1997. A Ras GAP is essential for cytokinesis and spatial patterning in dictyostelium. Development 124:983–996.
  • Lei, M., W. Lu, W. Meng, M.-C. Parrini, M. J. Eck, B. J. Mayer, and S. C. Harrison. 2000. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102:387–397.
  • Manser, E., C. Chong, Z. S. Zhao, T. Leung, G. Michael, C. Hall, and L. Lim. 1995. Molecular-cloning of a new member of the p21-cdc42/rac- activated kinase (pak) family. J. Biol. Chem. 270:25070–25078.
  • Manser, E., H. Y. Huang, T. H. Loo, X. Q. Chen, J. M. Dong, T. Leung, and L. Lim. 1997. Expression of constitutively active α-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell. Biol. 17:1129–1143.
  • Manser, E., T. Leung, H. Salihuddin, L. Tan, and L. Lim. 1993. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 363:364–367.
  • Manser, E., T. Leung, H. Salihuddin, Z. Zhao, and L. Lim. 1994. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46.
  • Martin, G. A., G. Bollag, F. McCormick, and A. Abo. 1995. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 14:1970–1978.
  • McCormick, F., and A. Wittinghofer. 1996. Interactions between Ras proteins and their effectors. Curr. Opin. Biotechnol. 7:449–456.
  • Morreale, A., M. Venkatesan, H. R. Mott, D. Owen, D. Nietlispach, P. N. Lowe, and E. D. Laue. 2000. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat. Struct. Biol. 7:384–388.
  • Mott, H. R., D. Owen, D. Nietlispach, P. N. Lowe, E. Manser, L. Lim, and E. D. Laue. 1999. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature 399:384–388.
  • Nassar, N., G. Horn, C. Herrmann, A. Scherer, F. McCormick, and A. Wittinghofer. 1995. The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375:554–560.
  • Nomanbhoy, T., and R. A. Cerione. 1999. Fluorescence assays of Cdc42 interactions with target/effector proteins. Biochemistry 38:15878–15884.
  • Owen, D., H. R. Mott, E. D. Laue, and P. N. Lowe. 2000. Residues in Cdc42 that specify binding to individual CRIB effector proteins. Biochemistry 39:1243–1250.
  • Plowman, G. D., S. Sudarsanam, J. Bingham, D. Whyte, and T. Hunter. 1999. The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc. Nat. Acad. Sci. USA 96:13603–13610.
  • Pohlner, J., T. Klauser, E. Kuttler, and R. Halter. 1992. Sequence-specific cleavage of protein fusions using a recombinant Neisseria type 2 IgA protease. Bio/Technology 10:799–804.
  • Rudel, T., and G. M. Bokoch. 1997. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of pak2. Science 276:1571–1574.
  • Rudolph, M. G., P. Bayer, A. Abo, J. Kuhlmann, I. R. Vetter, and A. Wittinghofer. 1998. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J. Biol. Chem. 273:18067–18076.
  • Rudolph, M. G., A. Wittinghofer, and I. R. Vetter. 1999. Nucleotide binding to the G12V-mutant of Cdc42 investigated by X-ray diffraction and fluorescence spectroscopy: two different nucleotide states in one crystal. Protein Sci. 8:778–787.
  • Stevens, W. K., W. Vranken, N. Goudreau, H. Xiang, P. Xu, and F. Ni. 1999. Conformation of a Cdc42/Rac interactive binding peptide in complex with Cdc42 and analysis of the binding interface. Biochemistry 38:5968–5975.
  • Stokoe, D., and F. McCormick. 1997. Activation of c-Raf-1 by Ras and SRC through different mechanisms—activation in vivo and in vitro. EMBO J. 16:2384–2396.
  • Symons, M., J. M. J. Derry, B. Karlak, S. Jiang, V. Lemahieu, F. McCormick, U. Francke, and A. Abo. 1996. Wiskott-Aldrich syndrome protein, a novel effector for the gtpase cdc42hs, is implicated in actin polymerization. Cell 84:723–734.
  • Tahara, S. M., and J. A. Traugh. 1981. Cyclic nucleotide-independent protein kinases from rabbit reticulocytes. Identification and characterization of a protein kinase activated by proteolysis. J. Biol. Chem. 256:11558–11564.
  • Tahara, S. M., and J. A. Traugh. 1982. Differential activation of two protease-activated protein kinases from reticulocytes by a Ca2+-stimulated protease and identification of phosphorylated translational components. Eur. J. Biochem. 126:395–399.
  • Thompson, G., D. Owen, P. A. Chalk, and P. N. Lowe. 1998. Delineation of the cdc42/rac-binding domain of p21-activated kinase. Biochemistry 37:7885–7891.
  • Tu, H., and M. Wigler. 1999. Genetic evidence for Pak1 autoinhibition and its release by Cdc42. Mol. Cell. Biol. 19:602–611.
  • Vetter, I. R., T. Linnemann, S. Wohlgemuth, M. Geyer, H. R. Kalbitzer, C. Herrmann, and A. Wittinghofer. 1999. Structural and biochemical analysis of Ras-effector signaling via RalGDS. FEBS Lett. 451:175–180.
  • Walter, B. N., Z. D. Huang, R. Jakobi, P. T. Tuazon, E. S. Alnemri, G. Litwack, and J. A. Traugh. 1998. Cleavage and activation of pal-activated protein kinase gamma-pak by cpp32 (caspase 3)—effects of autophosphorylation on activity. J. Biol. Chem. 273:28733–28739.
  • Yang, S. D., S. Y. Chang, and T. R. Soderling. 1987. Characterization of an autophosphorylation-dependent multifunctional protein kinase from liver. J. Biol. Chem. 262:9421–9427.
  • Yang, S. D., Y. L. Fong, J. S. Yu, and J. S. Liu. 1987. Identification and characterization of a phosphorylation-activated, cyclic AMP and Ca2+-independent protein kinase in the brain. J. Biol. Chem. 262:7034–7040.
  • Yu, J. S., W. J. Chen, M. H. Ni, W. H. Chan, and S. D. Yang. 1998. Identification of the regulatory autophosphoylation site of autophosphorylation-dependent protein kinase (auto-kinase)—evidence that auto-kinase belongs to a member of the p21-activated kinase family. Biochem. J. 334:121–131.
  • Zenke, F. T., C. C. King, B. P. Bohl, and G. M. Bokoch. 1999. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 274:32565–32573.
  • Zhang, B. L., Z. X. Wang, and Y. Zheng. 1997. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors—comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains. J. Biol. Chem. 272:21999–22007.
  • Zhao, Z. S., E. Manser, X. Q. Chen, C. Chong, T. Leung, and L. Lim. 1998. A conserved negative regulatory region in αPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol. 18:2153–2163.
  • Zumbihl, R., M. Aepfelbacher, A. Andor, C. A. Jacobi, H. Ruckdeschel, B. Rouot, and J. Heesemann. 1999. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274:29289–29293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.