12
Views
49
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Gα11 Signaling through ARF6 Regulates F-Actin Mobilization and GLUT4 Glucose Transporter Translocation to the Plasma Membrane

, , , , , , & show all
Pages 5262-5275 | Received 11 Dec 2000, Accepted 30 Apr 2001, Published online: 28 Mar 2023

REFERENCES

  • Al-Anwar, O., H. Radhakrishna, and J. G. Donaldson. 2000. Separation of membrane trafficking and actin remodeling functions of ARF6 with an effector domain mutant. Mol. Cell. Biol. 20:5998–6007.
  • Amatruda, T., D. Steele, V. Slepak, and M. I. Simon. 1991. G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc. Natl. Acad. Sci. USA 88:5587–5591.
  • Baldini, G., R. Hohman, M. J. Charron, and H. F. Lodish. 1991. Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in alpha-toxin-permeabilized rat adipose cells. J. Biol. Chem. 266:4037–4040.
  • Baumann, C. A., V. Ribon, M. Kanzaki, D. C. Thurmond, S. Mora, S. Shigematsu, P. E. Bickel, J. E. Pessin, and A. R. Saltiel. 2000. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207.
  • Berridge, M. J.. 1993. Inositol trisphosphate and calcium signalling. Nature 361:315–325.
  • Birnbaum, M. J.. 1989. Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell 57:305–315.
  • Boshans, R. L., S. Szanto, L. V. Alest, and C. D'Souza-Schorey. 2000. ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol. Cell. Biol. 20:3685–3694.
  • Brozinick, J. T., and M. J. Birnbaum. 1998. Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J. Biol. Chem. 273:14679–14682.
  • Caumont, A. S., N. Vitale, M. Gensse, M. C. Galas, J. E. Casanova, and M. F. Bader. 2000. Identification of a plasma membrane-associated guanine nucleotide exchange factor for ARF6 in chromaffin cells. Possible role in the regulated exocytotic pathway. J. Biol. Chem. 275:15637–15644.
  • Charron, M. J., F. C. Brosius, S. L. Alper, and H. F. Lodish. 1989. A glucose transport protein expressed predominantly in insulin-responsive tissues. Proc. Natl. Acad. Sci. USA 86:2535–2539.
  • Cheatham, B., C. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. 1994. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA syntesis and glucose transporter translocation. Mol. Cell. Biol. 14:4902–4911.
  • Chomczynski, P.. 1993. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques 15:532–537.
  • Cushman, S. W., and L. J. Wardzala. 1980. Potential mechanism of insulin action on glucose transport in isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255:4758–4762.
  • Czech, M. P.. 2000. Lipid rafts and insulin action. Nature 407:147–148.
  • Czech, M. P., and J. M. Buxton. 1993. Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes. J. Biol. Chem. 268:9187–9190.
  • Czech, M. P., A. Chawla, C. W. Woon, J. M. Buxton, M. Armoni, W. Tang, M. Joly, and S. Corvera. 1993. Exofacial epitope-tagged glucose transporter chimeras reveal COOH-terminal sequences governing cellular localization. J. Cell Biol. 123:127–135.
  • D'Souza-Schorey, C., R. L. Boshans, M. McDonough, P. D. Stahl, and L. V. Alest. 1997. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 16:5445–5454.
  • Elmendorf, J. S., D. Chen, and J. E. Pessin. 1998. Guanosine 5′-O-(3-thiotriphosphate) (GTPγS) stimulation of GLUT4 translocation is tyrosine kinase-dependent. J. Biol. Chem. 273:13289–13296.
  • Frost, S. C., and M. D. Lane. 1985. Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3–L1 adipocytes. J. Biol. Chem. 260:2646–2652.
  • Fukumoto, H., T. Kayano, J. B. Buse, Y. Edwards, P. F. Pilch, G. I. Bell, and S. Seino. 1989. Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J. Biol. Chem. 264:7776–7779.
  • Gao, Z., A. S. Robeva, and J. Linden. 1999. Purification of A1 adenosine receptor-G-protein complexes: effects of receptor down-regulation and phosphorylation on coupling. Biochem. J. 338:729–736.
  • Green, A., D. J. A. Walters, and S. E. Belt. 1994. Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase. Endocrinology 136:E254–E261.
  • Han, D. H., P. A. Hansen, L. A. Nolte, and J. O. Holloszy. 1998. Removal of adenosine decreases the responsiveness of muscle glucose transport to insulin and contractions. Diabetes 47:1671–1675.
  • Haney, P. M., J. W. Slot, R. C. Piper, D. E. James, and M. Mueckler. 1991. Intracellular targeting of the insulin-regulatable glucose transporter (GLUT4) is isoform specific and independent of cell type. J. Cell Biol. 114:689–699.
  • Harrison, S. A., J. M. Buxton, B. M. Clancy, and M. P. Czech. 1990. Insulin regulation of hexose transport in mouse 3T3–L1 cells expressing the human HepG2 glucose transporter. J. Biol. Chem. 265:20106–20116.
  • Hayashi, T., M. F. Hirshman, E. J. Kurth, W. W. Winder, and L. J. Goodyear. 1998. Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373.
  • He, T. C., S. Zhou, L. T. DaCosta, J. Yu, K. W. Kinzler, and B. Vogelstein. 1998. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95:2509–2514.
  • Hirshman, C. A., and C. W. Emala. 1999. Actin reorganization in airway smooth muscle cells involves Gq and Gi-2 activation of Rho. Am. J. Physiol. 277:L653–L661.
  • Honda, A., M. Nogami, T. Yokozeki, M. Yamazaki, H. Nakamura, H. Watanabe, K. Kawamoto, K. Nakayama, A. J. Morris, M. A. Frohman, and Y. Knaho. 1999. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 5:521–532.
  • Imamura, T., K. Ishibashi, S. Dalle, S. Ugi, and J. M. Olefsky. 1999. Endothelin-1-induced GLUT4 translocation is mediated via Galpha(q/11) protein and phosphatidylinositol 3-kinase in 3T3–L1 adipocytes. J. Biol. Chem. 274:33691–33695.
  • Imamura, T., P. Vollenweider, K. Egawa, M. Clodi, K. Ishibashi, N. Nakashima, S. Ugi, J. W. Adams, J. H. Brown, and J. M. Olefsky. 1999. G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3–L1 adipocytes. Mol. Cell. Biol. 19:6765–6774.
  • Joost, H. G., T. M. Weber, S. W. Cushman, and I. A. Simpson. 1986. Insulin-stimulated glucose transport in rat adipose cells. Modulation of transporter intrinsic activity by isoproterenol and adenosine. J. Biol. Chem. 261:10033–10036.
  • Kanai, F., K. Ito, M. Todaka, H. Hayashi, S. Kamohara, K. Ishii, O. Okada, O. Hazeki, M. Ui, and Y. Ebina. 1993. Insulin-stimulated GLUT4 translocation is relevant to the phospohorylation of IRS-1 and the activity of PI3-kinase. Biochem. Biophys. Res. Commun. 195:762–768.
  • Kanzaki, M., R. T. Watson, N. O. Artemyev, and J. E. Pessin. 2000. The trimeric GTP-binding protein (G(q)/G(11)) alpha subunit is required for insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes. J. Biol. Chem. 275:7167–7175.
  • Kelly, K. L., and N. B. Ruderman. 1993. Insulin-stimulated phosphatidylinositol 3-kinase. Association with a 185 kDa tyrosine-phosphorylated protein (IRS-1) and localization in a low density membrane vesicle. J. Biol. Chem. 268:4391–4398.
  • Khayat, Z. A., P. Tong, K. Yaworsky, R. J. Bloch, and A. Klip. 2000. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J. Cell Sci. 113:279–290.
  • Kishi, K., H. Hayashi, L. Wang, S. Kamohara, M. Tamaoka, T. Shimizu, F. Ushikubi, S. Narumiya, and Y. Ebina. 1996. Gq-coupled receptors transmit the signal for GLUT4 translocation via an insulin-independent pathway. J. Biol. Chem. 271:26561–26568.
  • Kishi, K., N. Muromoto, Y. Nakaya, I. Miyata, A. Hagi, H. Hayashi, and Y. Ebina. 1998. Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 47:550–557.
  • Kuroda, M., R. C. Honnor, S. W. Cushman, C. Londos, and I. A. Simpson. 1987. Regulation of insulin-stimulated glucose transport in the isolated rat adipocyte. cAMP-independent effects of lipolytic and antilipolytic agents. J. Biol. Chem. 262:245–253.
  • Langille, S. E., V. Patki, J. K. Klarlund, J. M. Buxton, J. J. Holik, A. Chawla, S. Corvera, and M. P. Czech. 1999. ADP-ribosylation factor 6 as a target of guanine nucleotide exchange factor GRP1. J. Biol. Chem. 274:27099–27104.
  • Lawrence, J. T. R., and M. J. Birnbaum. 2001. ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3–L1 adipocytes. Mol. Cell. Biol. 21:5276–5285.
  • Marshall, B. A., H. Murata, R. C. Hresko, and M. Mueckler. 1993. Domains that confer intracellular sequestration of the Glut4 glucose transporter in Xenopus oocytes. J. Biol. Chem. 268:26193–16199.
  • Martin, L. B., A. Shewan, C. A. Millar, G. W. Gould, and D. E. James. 1998. Vesicle associated membrane protein 2 plays a specific role in the insulin-dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3–L1 adipocytes. J. Biol. Chem. 273:1444–1452.
  • Martin, S. S., T. Haruta, A. J. Morris, A. Kippel, L. T. Williams, and J. M. Olefsky. 1996. Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3 L-1 adipocytes. J. Biol. Chem. 271:17605–17608.
  • Millar, C. A., A. Shewan, G. R. X. Hickson, D. E. James, and G. W. Gould. 1999. Differential regulation of secretory compartments containing the insulin-responsive glucose transporter 4 in 3T3–L1 adipocytes. Mol. Biol. Cell. 10:3675–3688.
  • Min, J., S. Okada, K. Coker, B. P. Ceresa, J. S. Elmendorf, L J. Syu, Y. Noda, A. R. Saltiel, and J. E. Pessin. 1999. Synip: a novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes. Mol. Cell 3:751–760.
  • Moss, J., and M. Vaughan. 1998. Molecules in the ARF orbit. J. Biol. Chem. 273:21431–21434.
  • Naknishi, S., S. Kakita, I. Takahashi, K. Kawahara, E. Tsukuda, T. Sano, K. Yamada, M. Yoshida, H. Kase, and Y. Matsuda. 1992. Wortmannin, a microbial product inhibitor of myosin light chain kinase. J. Biol. Chem. 267:2157–2163.
  • Nobes, C. D., and A. Hall. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62.
  • Nobes, C. D., P. Hawkins, L. Stephens, and A. Hall. 1995. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108:226–233.
  • Okada, T., Y. Kawano, T. Sakakibara, O. Hazeki, and M. Ui. 1994. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269:3568–3573.
  • Omata, W., H. Shibata, L. Li, K. Takata, and I. Kojima. 2000. Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem. J. 346:321–328.
  • Ozawa, K., M. Takahashi, and K. Sobue. 1996. Phase specific association of heterotrimeric GTP-binding proteins with the actin-based cytoskeleton during thrombin receptor-mediated platelet activation. FEBS Lett. 382:159–163.
  • Radhakrishna, H., O. Al-Anwar, Z. Khachikian, and J. G. Donaldson. 1999. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112:855–866.
  • Radhakrishna, H., R. D. Klausner, and J. G. Donaldson. 1996. Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol. 134:935–946.
  • Robinson, L. J., S. Pang, D. S. Harris, J. Heuser, and D. E. James. 1992. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3–L1 adipocytes: effects of ATP insulin, and GTP gamma S and localization of GLUT4 to clathrin lattices. J. Biol. Chem. 117:1181–1196.
  • Rodionov, V. I., A. J. Hope, T. M. Svitkina, and G. G. Borisy. 1998. Functional coordination of microtubule-based and actin-based motility in melanophores. Curr. Biol. 8:165–168.
  • Rogers, S. L., and V. Gelfand. 1998. Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr. Biol. 8:161–164.
  • Sharma, P. M., K. Egawa, Y. Huang, J. L. Martin, I. Huvar, G. R. Boss, and J. M. Olefsky. 1998. Inhibition of phosphatidylinositol 3-kinase activity by adenovirus mediated gene transfer and its effect on insulin action. J. Biol. Chem. 273:18528–18537.
  • Shibasaki, Y., H. Ishihara, N. Kizuki, T. Asano, Y. Oka, and Y. Yazaki. 1997. Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J. Biol. Chem. 272:7578–7581.
  • Simon, M. I., M. P. Strathmann, and N. Gautam. 1991. Diversity of G proteins in signal transduction. Science 252:802–808.
  • Smith, U., M. Kuroda, and I. A. Simpson. 1994. Counter-regulation of insulin-stimulated glucose transport by catecholamines in the isolated rat adipose cell. J. Biol. Chem. 259:8758–8763.
  • Spector, I., Y. Kashman, and A. Groweiss. 1983. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495.
  • Suzuki, K., and T. Kono. 1980. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. USA 77:2542–2545.
  • Tsakiridis, T., M. Vranic, and A. Klip. 1994. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J. Biol. Chem. 269:29934–29942.
  • Verhey, K. J., and M. J. Birnbaum. 1994. A Leu-Leu sequence is essential for COOH-terminal targeting signal of GLUT4 glucose transporter in fibroblasts. J. Biol. Chem. 269:2353–2356.
  • Virbasius, J. V., A. Guilherme, and M. P. Czech. 1996. Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain. J. Biol. Chem. 271:13304–13307.
  • Vollenweider, P., S. S. Martin, T. Haruta, A. J. Morris, J. G. Nelson, N. Cormont, Y. Le Marchand-Brustel, D. W. Rose, and J. M. Olefsky. 1997. The small guanosine triphosphate-binding protein Rab4 is involved in insulin-induced GLUT4 translocation and actin filament rearrangement in 3T3–L1 cells. Endocrinology 138:4941–4949.
  • Wang, Q. H., P. J. Bilan, T. Tsakiridis, A. Hinek, and A. Klip. 1998. Actin filaments participate in the relocalization of phosphatidylinositol 3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3–L1 adipocytes. Biochem. J. 331:917–928.
  • Wilson, P. T., and H. R. Bourne. 1995. Fatty acylation of alpha z. Effects of palmitoylation and myristoylation on alpha z signaling. J. Biol. Chem. 270:9667–9675.
  • Wu-Wong, J. R., C. E. Berg, J. Wang, W. J. Chiou, and B. Fissel. 1999. Endothelin stimulates glucose uptake and GLUT4 translocation via activation of endothelin ETA receptor in 3T3–L1 adipocytes. J. Biol. Chem. 274:8103–8110.
  • Yang, C. Z., and M. Mueckler. 1999. ADP-ribosylation factor 6 (ARF6) defines two insulin-regulated secretory pathways in adipocytes. J. Biol. Chem. 274:25297–25300.
  • Yeh, J.-I., E. A. Gulve, L. Rameh, and M. J. Birnbaum. 1995. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J. Biol. Chem. 270:2107–2111.
  • Zhang, Q., J. Calafat, H. Janssen, and S. Greenberg. 1999. ARF6 is required for growth factor- and Rac-mediated membrane ruffling in macrophages at a stage distal to Rac membrane targeting. Mol. Cell. Biol. 12:8158–8168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.