46
Views
32
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Insert Region of RhoA Is Essential for Rho Kinase Activation and Cellular Transformation

, &
Pages 5287-5298 | Received 12 Jan 2001, Accepted 11 May 2001, Published online: 28 Mar 2023

REFERENCES

  • Alberts, A. S.. 2001. Identification of a carboxy-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276:2824–2830.
  • Amano, M., K. Chihara, K. Kimura, Y. Fukata, N. Nakamura, Y. Matsuura, and K. Kaibuchi. 1997. Formation of actin stress fibers and focal adhesions enhanced by Rho kinase. Science 275:1308–1311.
  • Amano, M., K. Chihara, N. Nakamura, T. Kaneko, Y. Matsuura, and K. Kaibuchi. 1999. The COOH terminus of Rho kinase negatively regulates Rho kinase activity. J. Biol. Chem. 274:32418–32424.
  • Amano, M., M. Ito, K. Kimura, Y. Fukata, K. Chihara, T. Nakano, Y. Matsuura, and K. Kaibuchi. 1996. Phosphorylation and activation of myosin by Rho-associated kinase (Rho kinase). J. Biol. Chem. 271:20246–20249.
  • Aspenstrom, P.. 1999. Effectors for the Rho GTPases. Curr. Opin. Cell Biol. 11:95–102.
  • Bishop, A. L., and A. Hall. 2000. Rho GTPases and their effector proteins. Biochem. J. 348:241–255.
  • Feltham, J. L., V. Dotsch, S. Raza, D. Manor, R. A. Cerione, M. J. Sutcliffe, G. Wagner, and R. E. Oswald. 1997. Definition of the switch surface in the solution structure of Cdc42Hs. Biochemistry 36:8755–8766.
  • Freeman, J. L., A. Abo, and J. D. Lambeth. 1996. Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J. Biol. Chem. 271:19794–19801.
  • Fritz, G., I. Just, and B. Kaina. 1999. Rho GTPases are over-expressed in human tumors. Int. J. Cancer 81:682–687.
  • Fujisawa, K., P. Madaule, T. Ishizaki, G. Watanabe, H. Bito, Y. Saito, A. Hall, and S. Narumiya. 1998. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J. Biol. Chem. 273:18943–18949.
  • Hall, A.. 1998. Rho GTPases and the actin cytoskeleton. Science 279:509–514.
  • Hirshberg, M., R. W. Stockley, G. Dodson, and M. R. Webb. 1997. The crystal structure of human rac1, a member of the rho-family complexed with a GTP analogue. Nat. Struct. Biol. 4:147–152.
  • Ihara, K., S. Muraguchi, M. Kato, T. Shimizu, M. Shirakawa, S. Kuroda, K. Kaibuchi, and T. Hakoshima. 1998. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem. 273:9656–9666.
  • Ishizaki, T., M. Maekawa, K. Fujisawa, K. Okawa, A. Iwamatsu, A. Fujita, N. Watanabe, Y. Saito, A. Kakizuka, N. Morii, and S. Narumiya. 1996. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15:1885–1893.
  • Izawa, I., M. Amano, K. Chihara, T. Yamamoto, and K. Kaibuchi. 1998. Possible involvement of the inactivation of the Rho-Rho kinase pathway in oncogenic Ras-induced transformation. Oncogene 17:2863–2871.
  • Joneson, T., and D. Bar-Sagi. 1998. A Rac1 effector site controlling mitogenesis through superoxide production. J. Biol. Chem. 273:17991–17994.
  • Kaibuchi, K., S. Kuroda, and M. Amano. 1999. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68:459–486.
  • Karnoub, A. E., C. J. Der, and S. L. Campbell. 2001. The insert region of rac1 is essential for membrane ruffling but not cellular transformation. Mol. Cell. Biol. 21:2847–2857.
  • Khosravi-Far, R., P. A. Solski, G. J. Clark, M. S. Kinch, and C. J. Der. 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453.
  • Lamarche, N., N. Tapon, L. Stowers, P. D. Burbelo, P. Aspenstrom, T. Bridges, J. Chant, and A. Hall. 1996. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87:519–529.
  • Leung, T., X. Q. Chen, E. Manser, and L. Lim. 1996. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16:5313–5327.
  • Leung, T., E. Manser, L. Tan, and L. Lim. 1995. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270:29051–29054.
  • Lu, Z., A. Hornia, T. Joseph, T. Sukezane, P. Frankel, M. Zhong, S. Bychenok, L. Xu, L. A. Feig, and D. A. Foster. 2000. Phospholipase D and RalA cooperate with the epidermal growth factor receptor to transform 3Y1 rat fibroblasts. Mol. Cell. Biol. 20:462–467.
  • Matsui, T., M. Amano, T. Yamamoto, K. Chihara, M. Nakafuku, M. Ito, T. Nakano, K. Okawa, A. Iwamatsu, and K. Kaibuchi. 1996. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15:2208–2216.
  • McCallum, S. J., W. J. Wu, and R. A. Cerione. 1996. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. J. Biol. Chem. 271:21732–21737.
  • Narumiya, S.. 1996. The small GTPase Rho: cellular functions and signal transduction. J. Biochem (Tokyo) 120:215–228.
  • Narumiya, S., T. Ishizaki, and M. Uehata. 2000. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 325:273–284.
  • Narumiya, S., T. Ishizaki, and N. Watanabe. 1997. Rho effectors and reorganization of actin cytoskeleton. FEBS Lett. 410:68–72.
  • Nisimoto, Y., J. L. Freeman, S. A. Motalebi, M. Hirshberg, and J. D. Lambeth. 1997. Rac binding to p67phox: Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. J. Biol. Chem. 272:18834–18841.
  • Nobes, C. D., and A. Hall. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62.
  • Oshiro, N., Y. Fukata, and K. Kaibuchi. 1998. Phosphorylation of moesin by rho-associated kinase (Rho kinase) plays a crucial role in the formation of microvilli-like structures. J. Biol. Chem. 273:34663–34666.
  • Palmer, R. H., L. V. Dekker, R. Woscholski, J. A. Le Good, R. Gigg, and P. J. Parker. 1995. Activation of PRK1 by phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. A comparison with protein kinase C isotypes. J. Biol. Chem. 270:22412–22416.
  • Perona, R., P. Esteve, B. Jimenez, R. P. Ballestero, S. Ramon y Cajal, and J. C. Lacal. 1993. Tumorigenic activity of rho genes from Aplysia californica. Oncogene 8:1285–1292.
  • Qiu, R. G., J. Chen, F. McCormick, and M. Symons. 1995. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92:11781–11785.
  • Quilliam, L. A., J. F. Rebhun, H. Zong, and A. F. Castro. 2001. Analysis of M Ras/R-Ras3 signaling and biology. Methods Enzymol. 333:187–202.
  • Ridley, A. J., and A. Hall. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399.
  • Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.
  • Sahai, E., A. S. Alberts, and R. Treisman. 1998. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 17:1350–1361.
  • Sahai, E., T. Ishizaki, S. Narumiya, and R. Treisman. 1999. Transformation mediated by RhoA requires activity of ROCK kinases. Curr. Biol. 9:136–145.
  • Sahai, E., M. F. Olson, and C. J. Marshall. 2001. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 20:755–766.
  • Self, A. J., and A. Hall. 1995. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol. 256:3–10.
  • Singer, W. D., H. A. Brown, G. M. Bokoch, and P. C. Sternweis. 1995. Resolved phospholipase D activity is modulated by cytosolic factors other than Arf. J. Biol. Chem. 270:14944–14950.
  • Symons, M.. 1996. Rho family GTPases: the cytoskeleton and beyond. Trends Biochem. Sci. 21:178–181.
  • Van Aelst, L., and C. D'Souza-Schorey. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322.
  • Walker, S. J., W. J. Wu, R. A. Cerione, and H. A. Brown. 2000. Activation of phospholipase D1 by Cdc42 requires the Rho insert region. J. Biol. Chem. 275:15665–15668.
  • Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1:136–143.
  • Watanabe, N., P. Madaule, T. Reid, T. Ishizaki, G. Watanabe, A. Kakizuka, Y. Saito, K. Nakao, B. M. Jockusch, and S. Narumiya. 1997. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16:3044–3056.
  • Wei, Y., Y. Zhang, U. Derewenda, X. Liu, W. Minor, R. K. Nakamoto, A. V. Somlyo, A. P. Somlyo, and Z. S. Derewenda. 1997. Crystal structure of RhoA-GDP and its functional implications. Nat. Struct. Biol. 4:699–703.
  • Westwick, J. K., Q. T. Lambert, G. J. Clark, M. Symons, L. Van Aelst, R. G. Pestell, and C. J. Der. 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17:1324–1335.
  • Wu, W. J., D. A. Leonard, R. A. Cerione, and D. Manor. 1997. Interaction between Cdc42Hs and RhoGDI is mediated through the Rho insert region. J. Biol. Chem. 272:26153–26158.
  • Wu, W. J., R. Lin, R. A. Cerione, and D. Manor. 1998. Transformation activity of Cdc42 requires a region unique to Rho-related proteins. J. Biol. Chem. 273:16655–16658.
  • Yoshinaga, C., H. Mukai, M. Toshimori, M. Miyamoto, and Y. Ono. 1999. Mutational analysis of the regulatory mechanism of PKN: the regulatory region of PKN contains an arachidonic acid-sensitive autoinhibitory domain. J. Biochem (Tokyo) 126:475–484.
  • Yu, W., J. Liu, N. A. Morrice, and R. E. Wettenhall. 1997. Isolation and characterization of a structural homologue of human PRK2 from rat liver. Distinguishing substrate and lipid activator specificities. J. Biol. Chem. 272:10030–10034.
  • Zohn, I. M., S. L. Campbell, R. Khosravi-Far, K. L. Rossman, and C. J. Der. 1998. Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17:1415–1438.
  • Zong, H., N. Raman, L. A. Mickelson-Young, S. J. Atkinson, and L. A. Quilliam. 1999. Loop 6 of RhoA confers specificity for effector binding, stress fiber formation, and cellular transformation. J. Biol. Chem. 274:4551–4560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.