6
Views
20
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

SIR Functions Are Required for the Toleration of an Unrepaired Double-Strand Break in a Dispensable Yeast Chromosome

, , &
Pages 5359-5373 | Received 18 Apr 2001, Accepted 15 May 2001, Published online: 28 Mar 2023

REFERENCES

  • Ahne, F., B. Jha, and F. Eckardt-Schupp. 1997. The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 4:743–759.
  • Allen, J. B., Z. Zhou, W. Siede, E. C. Friedberg, and S. J. Elledge. 1994. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8:2416–2428.
  • Ansari, A., and M. R. Gartenberg. 1997. The yeast silent information regulator Sir4p anchors and partitions plasmids. Mol. Cell. Biol. 17:7061–7068.
  • Aparicio, O. M., B. L. Billington, and D. E. Gottschling. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae.. Cell 66:1279–1287.
  • Astrom, S. U., S. M. Okamura, and J. Rhine. 1999. Yeast cell-type regulation of DNA repair. Nature 397:310
  • Bennett, C., E. Perkins, and M. A. Resnick. 1991. Chromosomal metabolism and organization in yeast: genetic and molecular approaches. Modern microbial genetics.. U. Streips, and R. Yasbin. 389–430. Wiley-Liss, New York, N.Y
  • Bennett, C. B., A. L. Lewis, K. K. Baldwin, and M. A. Resnick. 1993. Lethality induced by a single site-specific double strand break in a dispensable yeast plasmid. Proc. Natl. Acad. Sci. USA 90:5613–5617.
  • Bennett, C. B., T. J. Westmoreland, J. R. Snipe, and M. A. Resnick. 1996. A double-strand break within a yeast artificial chromosome (YAC) containing human DNA can result in YAC loss, deletion, or cell lethality. Mol. Cell. Biol. 16:4414–4425.
  • Bennett, C. B., J. R. Snipe, and M. A. Resnick. 1997. A persistent double-strand break destabilizes human DNA in yeast and can lead to G2 arrest and lethality. Cancer Res. 57:1970–1980.
  • Boulton, S. J., and S. P. Jackson. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24:4639–4648.
  • Boulton, S. J., and S. P. Jackson. 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:1819–1828.
  • Brunborg, G., M. A. Resnick, and D. H. Williamson. 1980. Cell-cycle-specific repair of DNA double strand breaks in Saccharomyces cerevisiae. Radiat. Res. 82:547–558.
  • Chang, B. D., E. V. Broude, M. Dokmanovic, H. Zhu, A. Ruth, Y. Xuan, E. S. Kandel, E. Lausch, K. Christov, and I. B. Roninson. 1999. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59:3761–3767.
  • Diffley, J. F., and B. Stillman. 1988. Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer. Proc. Natl. Acad. Sci. USA 85:2120–2124.
  • Fasullo, M., and P. Dave. 1994. Mating type regulates the radiation-associated stimulation of reciprocal translocation events in Saccharomyces cerevisiae.. Mol. Gen. Genet. 243:63–70.
  • Fishman-Lobell, J., and J. E. Haber. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of yeast ultraviolet repair gene RAD1.. Science 258:480–484.
  • Flores-Rozas, H., and R. D. Kolodner. 2000. Links between replication, recombination and genome instability in eukaryotes. Trends Biochem. Sci. 25:196–200.
  • Game, J. C., and R. K. Mortimer. 1974. A genetic study of x-ray sensitive mutants in yeast. Mutat. Res. 24:281–292.
  • Goldstein, A. L., and J. H. McCusker. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae.. Yeast 15:1541–1553.
  • Hartwell, L.. 1992. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71:543–546.
  • Hartwell, L., P. Szankasi, C. J. Roberts, A. W. Murrary, and S. H. Friend. 1997. Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–1068.
  • Hartwell, L. H., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Herskowitz, I.. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae.. Microbiol. Rev. 52:536–553.
  • Heude, M., and F. Fabre. 1993. a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics 133:489–498.
  • Ho, K. S., and R. K. Mortimer. 1973. Induction of dominant lethality by x-rays in a radiosensitive strain of yeast. Mutat. Res. 20:45–51.
  • Humphery, T., and T. Enoch. 1995. Keeping mitosis in check. Curr. Biol. 5:376–379.
  • Ivanov, E. L., N. Sugawara, C. I. White, F. Fabre, and J. E. Haber. 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3414–3425.
  • Ivy, J. M., A. J. Klar, and J. B. Hicks. 1986. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae.. Mol. Cell. Biol. 6:688–702.
  • Jackson, S. P.. 1997. Genomic stability silencing and DNA repair connect. Nature 388:829–830.
  • Kato, R., and H. Ogawa. 1994. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae.. Nucleic Acids Res. 22:3104–3112.
  • Kayne, P. S., U. J. Kim, M. Han, J. R. Mullen, F. Yoshizaki, and M. Grunstein. 1988. Extremely conserved histone H4N terminus is dispensable for growth but essential for repressing silent mating type loci in yeast. Cell 55:27–39.
  • Kennedy, B. K., N. R. Austriaco, J. Zhang, and L. Guarente. 1995. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae.. Cell 80:485–496.
  • Kimmerly, W., A. Buchman, R. Kornberg, and J. Rine. 1988. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer. EMBO J. 7:2241–2253.
  • Klar, A. J., J. N. Strathern, J. R. Broach, and J. B. Hicks. 1981. Regulation of transcription in expressed and unexpressed mating type cassettes of yeast. Nature 289:239–244.
  • Kowalczykowski, S. C.. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25:156–165.
  • Larionov, V., N. Kouprina, J. Graves, X.-N. Chen, J. R. Korenberg, and M. A. Resnick. 1996. Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc. Natl. Acad. Sci. USA 93:491–496.
  • Laurenson, P., and J. Rhine. 1992. Silencers, silencing, and heritable transcriptional states. Microbiol. Rev. 56:543–560.
  • Lee, S. E., J. K. Moore, A. Holmes, K. Umeza, R. D. Kolodner, and J. E. Haber. 1998. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409.
  • Lee, S. E., F. Paques, J. Sylvan, and J. E. Haber. 1999. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9:767–770.
  • Lewis, L. K., J. M. Kirchner, and M. A. Resnick. 1998. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 18:1891–1902.
  • Lewis, L. K., and M. A. Resnick. 2000. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae.. Mutat. Res. 451:71–89.
  • Lobachev, K. S., J. E. Stenger, O. G. Kozyreva, J. Jurka, D. A. Gordenin, and M. A. Resnick. 2000. Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J. 19:3822–3830.
  • Lovett, S. T., and R. K. Mortimer. 1987. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics 116:547–553.
  • Lydall, D., and T. Weinert. 1995. Yeast checkpoint genes in DNA processing: implications for repair and arrest. Science 270:1488–1491.
  • Lydall, D., and T. Weinert. 1997. G2/M checkpoint genes of Saccharomyces cerevisiae: further evidence for roles in DNA replication and/or repair. Mol. Gen. Genet. 256:638–651.
  • Malone, R. E., T. Ward, S. Lin, and J. Waring. 1990. The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr. Genet. 18:111–116.
  • Marshall, M., D. Mahoney, A. Rose, J. B. Hicks, and J. R. Broach. 1987. Functional domains of SIR4, a gene required for position effect regulation in Saccharomyces cerevisiae.. Mol. Cell. Biol. 7:4441–4452.
  • Martin, S. G., T. Laroche, N. Suka, M. Grunstein, and S. M. Gasser. 1999. Relocalization of telomeric Ku and Sir proteins in response to DNA strand breaks in yeast. Cell 97:621–633.
  • McAinsh, A. D., S. Scott-Drew, J. A. Murray, and S. P. Jackson. 1999. DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr. Biol. 9:963–966.
  • Mills, K. D., D. A. Sinclair, and L. Guarente. 1999. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97:609–620.
  • Moore, J. K., and J. E. Haber. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae.. Mol. Cell. Biol. 16:2164–2173.
  • Nairz, K., and F. Klein. 1997. mre11S—a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11:2272–2290.
  • Nasmyth, K. A., and S. I. Reed. 1980. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc. Natl. Acad. Sci. USA 77:2119–2123.
  • Navas, T. A., Z. Zheng, and S. J. Elledge. 1995. DNA polymerase ɛ links the DNA replication machinery to the S-phase checkpoint. Cell 74:29–39.
  • Ogawa, H., K. Johzuka, T. Nakagawa, S. H. Leem, and A. H. Hagihara. 1995. Functions of the yeast meiotic recombination genes, MRE11 and MRE2.. Adv. Biophys. 31:67–76.
  • Orr-Weaver, T. L., and J. W. Szostak. 1983. Yeast recombination: the association between double strand-gap repair and crossing-over. Proc. Natl. Acad. Sci. USA 80:4417–4421.
  • Palladino, F., T. Laroche, E. Gilson, A. Axelrod, L. Pillus, and S. M. Gasser. 1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75:543–555.
  • Paulovich, A. G., D. P. Toczyski, and L. Hartwell. 1997. When checkpoints fail. Cell 88:315–321.
  • Pilus, L., and J. Rhine. 1989. Epigenetic inheritance of transcriptional states in S. cerevisiae.. Cell 59:637–647.
  • Raghuraman, M. K., B. J. Brewer, and W. L. Fangman. 1994. Activation of a yeast replication origin near a double-stranded DNA break. Genes Dev. 8:554–562.
  • Resnick, M. A.. 1976. The repair of double-strand breaks in DNA: a model involving recombination. J. Theor. Biol. 59:97–106.
  • Resnick, M. A., and P. Martin. 1976. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143:119–129.
  • Ross, G. M.. 1999. Induction of cell death by radiotherapy. Endocr. Relat. Cancer 6:41–44.
  • Runge, K. W., and V. A. Zakian. 1996. TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae.. Mol. Cell. Biol. 16:3094–3105.
  • Sandell, L. L., and V. A. Zakian. 1993. Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75:729–739.
  • Schiestl, R. H., and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as carriers. Curr. Genet. 16:339–346.
  • Schultz, V. P., and V. A. Zakian. 1995. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76:1–20.
  • Shore, D., and K. Nasmyth. 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732.
  • Siede, W.. 1995. Cell cycle arrest in response to DNA damage: lessons from yeast. Mutat. Res. 337:73–84.
  • Siede, W., A. S. Friedberg, I. Dianova, and E. C. Friedberg. 1994. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Genetics 138:271–281.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae.. Genetics 122:19–27.
  • Strathern, J. N., C. S. Newlon, I. Herskowitz, and J. B. Hicks. 1979. Isolation of a circular derivative of yeast chromosome III: implications for the mechanism of mating type interconversion. Cell 18:309–319.
  • Strathern, J., J. Hicks, and I. Herskowitz. 1981. Control of cell type in yeast by the mating type locus. The alpha-1 alpha-2 hypothesis. J. Mol. Biol. 147:357–372.
  • Sugawara, N., and J. E. Haber. 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575.
  • Sun, Z., D. S. Fay, F. Marini, M. Foiani, and D. F. Stern. 1996. Spk1/Rad53 is regulated by Mec1 dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10:395–406.
  • Teo, S. H., and S. P. Jackson. 2000. Lifp targets the DNA ligase Lig4p to sites of DNA double strand breaks. Curr. Biol. 10:165–168.
  • Thompson, J. S., X. Ling, and M. Grunstein. 1994. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369:245–247.
  • Toczyski, D. P., D. J. Galgoczy, and L. H. Hartwell. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097–1106.
  • Tsukamoto, Y., J. Kato, and H. Ikeda. 1996. Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae.. Genetics 142:383–391.
  • Tsukamoto, Y., J. Kato, and H. Ikeda. 1996. Hdf1, a yeast Ku-protein homologue, is involved in illegitimate recombination, but not homologous recombination. Nucleic Acids Res. 24:2067–2072.
  • Tsukamoto, Y., J. Kato, and H. Ikeda. 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae.. Nature 388:900–903.
  • Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae.. Yeast 10:1793–1808.
  • Weinert, T., and D. Lydall. 1993. Cell cycle checkpoints, genetic instability and cancer. Semin. Cancer Biol. 4:129–140.
  • Weinert, T. A., and L. H. Hartwell. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae.. Science 241:317–322.
  • Weinert, T. A., and L. H. Hartwell. 1990. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol. Cell. Biol. 10:6554–6564.
  • Weinert, T. A., G. L. Kiser, and L. H. Hartwell. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8:652–655.
  • White, C. I., and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae.. EMBO J. 9:663–673.
  • Whittaker, S. G., B. M. Rockmill, A. E. Blechl, D. H. Malone, M. A. Resnick, and S. Fogel. 1988. The detection of mitotic and meiotic aneuploidy in yeast using a gene dosage selection system. Mol. Gen. Genet. 215:10–18.
  • Xu, Z., and D. Norris. 1998. The SFP1 gene product of Sacharromyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response. Genetics 150:1419–1428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.