28
Views
129
CrossRef citations to date
0
Altmetric
Gene Expression

Polynucleotide Phosphorylase Functions as Both an Exonuclease and a Poly(A) Polymerase in Spinach Chloroplasts

, &
Pages 5408-5416 | Received 22 Feb 2001, Accepted 15 May 2001, Published online: 28 Mar 2023

REFERENCES

  • Asamizu, E., K. Miura, K. Kucho, Y. Inoue, H. Fukuzawa, K. Ohyama, Y. Nakamura, and S. Tabata. 2000. Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii.. DNA Res. 7:305–307.
  • Asamizu, E., Y. Nakamura, S. Sato, H. Fukuzawa, and S. Tabata. 1999. A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Res. 6:369–373.
  • Barkan, A., and D. B. Stern. 1998. Chloroplast mRNA processing: intron splicing and 3′-end metabolism. A look beyond transcription: mechanisms determining mRNA stability and translation in plants.. J. Bailey-Serres, and D. R. Gallie. 162–173. American Society of Plant Physiologists, Rockville, Md
  • Blum, E., A. J. Carpousis, and C. F. Higgins. 1999. Polyadenylation promotes degradation of 3′-structured RNA by the Escherichia coli mRNA degradosome in vitro.. J. Biol. Chem. 274:4009–4016.
  • Cao, G., and N. Sarkar. 1997. Stationary phase-specific mRNAs in Escherichia coli are adenylated. Biochem. Biophys. Res. Commun. 239:46–50.
  • Carpousis, A. J., N. F. Vanzo, and L. C. Raynal. 1999. mRNA degradation, a tale of poly(A) and multiprotein machines. Trends Genet. 15:24–28.
  • Chen, P. S., T. Y. Toribara, and H. Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28:1756–1758.
  • Coburn, G. A., and G. A. Mackie. 1999. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog. Nucleic Acid Res. 62:55–108.
  • Decker, C. J., and R. Parker. 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7:1632–1643.
  • Drager, R. G., J. Girard-Bascou, Y. Choquet, K. L. Kindle, and D. B. Stern. 1998. In vivo evidence for 5′–>3′ exoribonuclease degradation of an unstable chloroplast mRNA. Plant J. 13:85–96.
  • Drager, R. G., D. C. Higgs, K. L. Kindle, and D. B. Stern. 1999. 5′ to 3′ exoribonucleolytic activity is a normal component of chloroplast mRNA decay pathways. Plant J. 19:521–531.
  • Drager, R. G., M. Zeidler, C. L. Simpson, and D. B. Stern. 1996. A chloroplast transcript lacking the 3′ inverted repeat is degraded by 3′ to 5′ exoribonuclease activity. RNA 2:652–663.
  • Emanuelsson, O., H. Nielsen, S. Brunak, and G. von Heijne. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300:1005–1016.
  • Emanuelsson, O., H. Nielsen, and G. von Heijne. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8:978–984.
  • Gagliardi, D., and C. J. Leaver. 1999. Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower. EMBO J. 18:3757–3766.
  • Gruissem, W., B. M. Greenberg, G. Zurawski, and R. B. Hallick. 1986. Chloroplast gene expression and promoter identification in chloroplast extracts. Methods Enzymol. 118:253–270.
  • Grunberg-Manago, M.. 1999. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu. Rev. Genet. 33:193–227.
  • Hampp, R., M. Goller, and H. Ziegler. 1982. Adenylate levels, energy charge and phosphorylation potential during dark-light and light-dark transition in chloroplast, mitochondria and cytosol of mesophyll protoplasts form Avena sativa L. Plant Physiol. 69:448–455.
  • Hayes, R., J. Kudla, and W. Gruissem. 1999. Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem. Sci. 24:199–202.
  • Hayes, R., J. Kudla, G. Schuster, L. Gabay, P. Maliga, and W. Gruissem. 1996. Chloroplast mRNA 3′-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J. 15:1132–1141.
  • Johnson, M. D., J. Popowski, G. J. Cao, P. Shen, and N. Sarkar. 1998. Bacteriophage T7 mRNA is polyadenylated. Mol. Microbiol. 27:23–30.
  • Klaff, P.. 1995. mRNA decay in spinach chloroplasts: psbA mRNA degradation is initiated by endonucleolytic cleavages within the coding region. Nucleic Acids Res. 23:4885–4892.
  • Komine, Y., L. Kwong, M. Anguera, S. Schuster, and D. B. Stern. 2000. Polyadenylation of three classes of chloroplast RNA in Chlamydomonas reinhardtii.. RNA 6:598–607.
  • Kuhn, J., U. Tengler, and S. Binder. 2001. Transcript lifetime is balanced between stabilizing stem-loop structures and degradation-promoting polyadenylation in plant mitochondria. Mol. Cell. Biol. 21:731–742.
  • Li, Q. S., J. D. Gupta, and A. G. Hunt. 1996. A plant poly(A) polymerase requires a novel RNA-binding protein for activity. J. Biol. Chem. 271:19831–19835.
  • Li, Q. S., J. D. Gupta, and A. G. Hunt. 1998. Polynucleotide phosphorylase is a component of a novel plant poly(A) polymerase. J. Biol. Chem. 273:17539–17543.
  • Liou, G. G., W. N. Jane, S. N. Cohen, N. S. Lin, and S. Lin-Chao. 2001. RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc. Natl. Acad. Sci. USA 98:63–68.
  • Lisitsky, I., P. Klaff, and G. Schuster. 1996. Addition of poly(A)-rich sequences to endonucleolytic cleavage sites in the degradation of spinach chloroplast mRNA. Proc. Natl. Acad. Sci. USA 93:13398–13403.
  • Lisitsky, I., P. Klaff, and G. Schuster. 1997. Blocking polyadenylation of mRNA in the chloroplast inhibits its degradation. Plant J. 12:1173–1178.
  • Lisitsky, I., A. Kotler, and G. Schuster. 1997. The mechanism of preferential degradation of polyadenylated RNA in the chloroplast: the exoribonuclease 100RNP/PNPase displays high binding affinity for poly(A) sequence. J. Biol. Chem. 272:17648–17653.
  • Littauer, U. Z., and M. Grunberg-Manago. 1999. Polynucleotide phosphorylase. The encyclopedia of molecular biology.. T. E. Creighton. 1911–1918. John Wiley and Sons, Inc., New York, N.Y
  • Lupold, D. S., A. G. Caoile, and D. B. Stern. 1999. Polyadenylation occurs at multiple sites in maize mitochondrial cox2 mRNA and is independent of editing status. Plant Cell 11:1565–1578.
  • Mohanty, B. K., and S. R. Kushner. 2000. Polynucleotide phosphorylase functions both as a 3′ to 5′ exonuclease and a poly(A) polymerase in Escherichia coli.. Proc. Natl. Acad. Sci. USA 97:11966–11971.
  • Nickelsen, J., M. Fleischmann, E. Boudreau, M. Rahire, and J.-D. Rochaix. 1999. Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in Chlamydomonas.. Plant Cell 11:957–970.
  • Raynal, L. C., and A. J. Carpousis. 1999. Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation. Mol. Microbiol. 32:765–775.
  • Raynal, L. C., H. M. Krisch, and A. J. Carpousis. 1998. The Bacillus subtilis nucleotidyltransferase is a tRNA CCA-adding enzyme. J. Bacteriol. 180:6276–6282.
  • Regnier, P., and C. M. Arraiano. 2000. Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays 22:235–244.
  • Schuster, G., and R. Bock. Editing, polyadenylation and degradation of mRNA in the chloroplast. Adv. Photosynth., in press.
  • Schuster, G., I. Lisitsky, and P. Klaff. 1999. Update on chloroplast molecular biology: polyadenylation and degradation of mRNA in the chloroplast. Plant Physiol. 120:937–944.
  • Soreq, H., and U. Z. Littauer. 1982. Polynucleotide phosphorylase 15, Academic Press, New York, N.Y
  • Steege, D. A.. 2000. Emerging features of mRNA decay in bacteria. RNA 6:1079–1090.
  • Stitt, M., W. Wirtz, and H. W. Heldt. 1980. Metabolite levels during induction in the chloroplast and extrachloroplast compartments of spinach protoplasts. Biochim. Biophys. Acta 593:85–102.
  • Symmons, M. F., G. H. Jones, and B. F. Luisi. 2000. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8:1215–1226.
  • Williamson, J. R., M. K. Raghuraman, and T. R. Cech. 1989. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59:871–880.
  • Yehudai-Resheff, S., and G. Schuster. 2000. Characterization of the E. coli poly(A)-polymerase: specificity to nucleotides, RNA-binding affinities and RNA-structure dependence activity. Nucleic Acids Res. 28:1139–1144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.