15
Views
86
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Histone H1 Phosphorylation by Cdk2 Selectively Modulates Mouse Mammary Tumor Virus Transcription through Chromatin Remodeling

, , , &
Pages 5417-5425 | Received 15 Mar 2001, Accepted 15 May 2001, Published online: 28 Mar 2023

REFERENCES

  • Ait-Si-Ali, S., S. Ramirez, F.-X. Barre, F. Dkhissi, L. Magnaghi-jaulin, J. A. Girault, P. Robin, M. Knibiehler, L. L. Pritchard, B. Ducommun, D. Trouche, and A. Harel-Bellan. 1998. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396:184–186.
  • Akiyama, T., T. Ohuchi, S. Sumida, K. Matsumoto, and K. Toyoshima. 1992. Phosphorylation of the retinoblastoma protein by cdk2. Proc. Natl. Acad. Sci. USA 89:7900–7904.
  • Archer, T. K., M. G. Cordingley, R. G. Wolford, and G. L. Hager. 1991. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11:688–698.
  • Archer, T. K., P. Lefebvre, R. G. Wolford, and G. L. Hager. 1992. Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576.
  • Archer, T. K., C. J. Fryer, H.-L. Lee, E. Zaniewski, T. Liang, and J. S. Mymryk. 1995. Steroid hormone receptor status defines the MMTV promoter chromatin structure in vivo. J. Steroid Biochem. 53:421–429.
  • Bonnefoy, E., M.-T. Bandu, and J. Doly. 1999. Specific binding of high-mobility-group 1 (HMG1) protein and histone H1 to the upstream AT-rich region of the murine beta interferon promoter: HMG1 protein acts as a potential antirepressor of the promoter. Mol. Cell. Biol. 19:2803–2816.
  • Bouvet, P., S. I. Dimitrov, and A. P. Wolffe. 1994. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 8:1147–1159.
  • Bradbury, E. M.. 1992. Reversible histone modifications and the chromosome cell cycle. Bioessays 14:9–16.
  • Bresnick, E. H., M. Bustin, V. Marsaud, H. Richard-Foy, and G. L. Hager. 1992. The transcriptionally active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 20:273–278.
  • Brooks, E. E., N. S. Gray, A. Joly, S. S. Kerwar, R. Lum, R. L. Mackman, T. C. Norman, J. Rosete, M. Rowe, S. R. Schow, P. G. Schultz, X. Wang, M. M. Wick, and D. Shiffman. 1997. CVT-313, a specific and potent inhibitor of CDK2 that prevents neointimal proliferation. J. Biol. Chem. 272:29207–29211.
  • Croston, G. E., L. A. Kerrigan, L. M. Lira, D. R. Marshak, and J. T. Kagonaga. 1991. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251:643–649.
  • Dedon, P. C., J. A. Soults, C. D. Allis, and M. A. Gorovsky. 1991. Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Mol. Cell. Biol. 11:1729–1733.
  • Dou, Y., and M. A. Gorovsky. 2000. Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Mol. Cell 2:225–231.
  • Dou, Y., C. A. Mizzen, M. Abrams, C. D. Allis, and M. A. Gorovsky. 1999. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol. Cell 4:641–647.
  • Fryer, C. J., and T. K. Archer. 1998. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393:88–91.
  • Gray, N., L. Detivaud, C. Doerig, and L. Meijer. 1999. ATP-site directed inhibitors of cyclin-dependent kinases. Curr. Med. Chem. 9:859–875.
  • Guo, C. Y., Y. Wang, D. L. Brautigan, and J. M. Larner. 1999. Histone H1 dephosphorylation is mediated through a radiation-induced signal transduction pathway dependent on ATM. J. Biol. Chem. 274:18715–18720.
  • Hager, G. L., T. K. Archer, G. Fragoso, E. H. Bresnick, Y. Tsukagoshi, S. John, and C. L. Smith. 1993. Influence of chromatin structure on the binding of transcription factors to DNA. Cold Spring Harbor Symp. Quant. Biol. 58:63–71.
  • Herrera, R. E., F. Chen, and R. A. Weinberg. 1996. Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts. Proc. Natl. Acad. Sci. USA 93:11510–11515.
  • Kadonaga, J. T.. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313.
  • Koff, A., A. Giordano, D. Desai, K. Yamashita, J. W. Harper, S. Elledge, T. Nishimoto, D. O. Morgan, B. R. Franza, and J. M. Roberts. 1992. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257:1689–1694.
  • Kuo, M. H., and C. D. Allis. 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626.
  • Kuo, M. H., J. Zhou, P. Jambeck, M. E. Churchill, and C. D. Allis. 1998. Histone acetyltransferase activity of yeast Gen5p is required for the activation of target genes in vivo. Genes Dev. 12:627–639.
  • Langan, T. A., J. Gautier, M. Lohka, R. Hollingsworth, S. Moreno, P. Nurse, J. Maller, and R. A. Sclafani. 1989. Mammalian growth associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol. Cell. Biol. 9:3860–3868.
  • Lee, H.-L., and T. K. Archer. 1994. Nucleosome-mediated disruption of transcription factor-chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo. Mol. Cell. Biol. 14:32–41.
  • Lee, H.-L., and T. K. Archer. 1998. Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO. J. 17:1454–1466.
  • Lu, M. J., S. S. Mpoke, C. A. Dadd, and C. D. Allis. 1995. Phosphorylated and dephosphorylated linker histone H1 reside in distinct chromatin domains in tetrahymena macronuclei. Mol. Biol. Cell 6:1077–1087.
  • Meijer, L., A. Borgne, O. Mulner, J. P. Chong, J. J. Blow, N. Inagaki, M. Inagaki, J. G. Delcros, and J. P. Moulinoux. 1997. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243:527–536.
  • Nacheva, G. A., D. Y. Guschin, O. V. Preobrazhenskaya, V. L. Karpov, K. K. Ebralidse, and A. D. Mirzabekov. 1989. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell 58:27–36.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Ohsumi, K., C. Katagiri, and T. Kishimoto. 1993. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262:2033–2035.
  • Panyim, S., and R. Chalkley. 1969. High-resolution acrylamide gel electrophoresis of histones. Arch. Biochem. Biophys. 130:337–346.
  • Richard-Foy, H., and G. L. Hager. 1987. Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO. J. 6:2321–2328.
  • Roth, S. Y., and C. D. Allis. 1992. Chromatin condensation: does histone H1 dephosphorylation play a role?. Trends Biochem. Sci. 17:93–98.
  • Shen, X., and M. A. Gorovsky. 1996. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86:475–483.
  • Shen, X., L. Yu, J. W. Weir, and M. A. Gorovsky. 1995. Linker histones are not essential and affect chromatin condensation in vivo. Cell 82:47–56.
  • Steinbach, O. C., A. P. Wolffe, and R. A. Rupp. 1997. Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389:395–399.
  • Torchia, J., C. Glass, and M. G. Rosenfeld. 1998. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10:373–383.
  • Wade, P. A., A. Gegonne, P. L. Jones, E. Ballestar, F. Aubry, and A. P. Wolffe. 1999. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat. Genet. 1:62–66.
  • Wade, P. A., and A. P. Wolffe. 1997. Histone acetyletransferases in control. Curr. Biol. 7:R82–R84.
  • Weintraub, S. J., C. A. Prater, and D. C. Dean. 1992. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358:259–261.
  • Wolffe, A. P.. 1994. The role of transcription factors, chromatin structure and DNA replication in 5S RNA gene regulation. J. Cell Sci. 107:2055–2063.
  • Wolffe, A. P.. 1997. Histone H1. Int. J. Biochem. Cell Biol. 12:1463–1476.
  • Wolffe, A. P.. 1998. Chromatin. Academic Press, Ltd., London, England
  • Wong, J., Q. Li, B. Z. Levi, Y. B. Shi, and A. P. Wolffe. 1997. Structural and functional features of a specific nucleosome containing a recognition element for the thyroid hormone receptor. EMBO J. 16:7130–7145.
  • Workman, J. L., and R. E. Kingston. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67:545–579.
  • Zhang, Y., H. H. Ng, H. Erdjument-Bromage, P. Tempst, A. Bird, and D. Reinberg. 1999. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 15:1924–1935.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.