16
Views
99
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

DNA Methylation Is Linked to Deacetylation of Histone H3, but Not H4, on the Imprinted Genes Snrpnand U2af1-rs1

, , , , , , & show all
Pages 5426-5436 | Received 19 Mar 2001, Accepted 15 May 2001, Published online: 28 Mar 2023

REFERENCES

  • Akhtar, A., and P. B. Becker. 2000. Activation of transcription through H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5:367–375.
  • Antequera, F., J. Boyes, and A. Bird. 1990. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514.
  • Bestor, T. H.. 2000. The DNA methyltransferases in mammals. Hum. Mol. Genet. 12:2395–2402.
  • Bielinska, B, S. M. Blaydes, K. Buiting, T. Yang, M. Krajewska-Walasek, B. Horsthemke, and C. I. Brannan. 2000. De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nat. Genet. 25:74–78.
  • Bird, A. P., and A. P. Wolffe. 1999. Methylation-induced repression—belts, braces, and chromatin. Cell 99:451–454.
  • Braunstein, M., R. E. Sobel, C. D. Allis, B. M. Turner, and J. R. Broach. 1996. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16:4349–4356.
  • Caspary, T, M. A. Cleary, C. C. Baker, X. J. Guan, and S. M. Tilghman. 1998. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 cluster. Mol. Cell. Biol. 18:3466–3474.
  • Cavalli, G., and R. Paro. 1999. Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286:955–958.
  • Chen, H., R. J. Lin, W. Xie, D. Wilpitz, and R. M. Evans. 1999. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98:675–686.
  • Cheung, P., K. G. Tanner, W. L. Cheung, P. Sassone-Corsi, J. M. Denu, and C. D. Allis. 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5:905–915.
  • Clayton, A. L., S. Rose, M. J. Barratt, and L. C. Mahadevan. 2000. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19:3714–3726.
  • Constância, M., B. Pickard, G. Kelsey, and W. Reik. 1998. Imprinting mechanisms. Genome Res. 8:881–900.
  • Dean, W. L., L. Bowden, A. Aitchison, J. Klose, T. Moore, J. J. Meneses, W. Reik, and R. Feil. 1998. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125:2273–2282.
  • Drewell, R. A., J. D. Brenton, J. F. Ainscough, S. C. Barton, K. Hilton, K. L. Arney, L. Dandolo, and M. A. Surani. 2000. Deletion of a silencer element disrupts H19 imprinting independently of a methylation epigenetic switch. Development 127:3419–3428.
  • Ekwall, K., T. Olsson, B. M. Turner, G. Cranston, and R. C. Allshire. 1997. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91:1021–1032.
  • El Kharroubi, A., G. Piras, and C. L. Stewart. 2001. DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts. J. Biol. Chem. 276:8674–8680.
  • Feil, R., M. D. Boyano, N. D. Allen, and G. Kelsey. 1997. Parental chromosome-specific chromatin conformation in the imprinted U2af1-rs1 gene in the mouse. J. Biol. Chem. 272:20893–20900.
  • Feil, R., and S. Khosla. 1999. Genomic imprinting in mammals: an interplay between chromatin and DNA methylation?. Trends Genet. 15:431–435.
  • Fuks, F., W. A. Burgers, A. Brehm, L. Hughes-Davies, and T. Kouzarides. 2000. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 24:88–91.
  • Gerelli, D., N. G. Sharpe, and D. S. Latchman. 1991. Cloning and sequencing of a mouse embryonal carcinoma cell mRNA encoding the tissue specific RNA splicing factor SmN. Nucleic Acids Res. 19:6642
  • Glenn, C. C., S. Saitoh, M. T. Jong, M. M. Filbrandt, U. Surti, D. J. Driscoll, and R. D. Nicholls. 1996. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am. J. Hum. Genet. 58:335–346.
  • Grandjean, V., L. O'Neill, T. Sado, B. Turner, and A. Ferguson-Smith. 2001. Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2–H19 domain. FEBS Lett. 488:165–169.
  • Gregory, R. I., and R. Feil. 1999. Analysis of chromatin in limited numbers of cells: a PCR-SSCP based assay of allele-specific nuclease sensitivity. Nucleic Acids Res. 27:R1–R4.
  • Grunstein, M.. 1998. Inheritance by histones. Cell 93:325–328.
  • Hansen, J. C., C. Tse, and A. P. Wolffe. 1998. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37:17637–17641.
  • Hatada, I., A. Nabetani, Y. Arai, S. Ohishi, M. Suzuki, S. Miyabara, Y. Nishimune, and T. Mukai. 1997. Aberrant methylation of an imprinted gene U2af1-rs1 (SP2) caused by its own transgene. J. Biol. Chem. 272:9120–9122.
  • Hatada, I., T. Sugama, and T. Mukai. 1993. A new imprinted gene cloned by a methylation-sensitive genome scanning method. Nucleic Acids Res. 21:5577–5582.
  • Hayashizaki, Y., H. Shibata, S. Hirotsune, H. Sugino, Y Okazaki, N. Sasaki, K. Hirose, H. Imoto, H. Okuizumi, M. Muramatsu, H. Komatsubara, T. Shiroishi, K. Moriwaki, M. Katsuki, N. Hatano, H. Sasaki, T. Ueda, N. Mise, N. Takagi, C. Plass, and V. M. Chapman. 1994. Identification of an imprinted U2af binding protein related sequence on mouse chromosome 11 using the RLGS method. Nat. Genet. 6:33–39.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and C. Crane-Robinson. 1994. Core histone hyperacetylation co-maps with generalised DNaseI sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13:1823–1830.
  • Hu, J.-F., J. Pham, I. Dey, T. Li, T. H. Vu, and A. R. Hoffman. 2000. Allele-specific histone acetylation accompanies genomic imprinting of the insulin-like growth factor II receptor gene. Endocrinology 141:4428–4435.
  • Johnson, C. A., L.P. O'Neill, A. Mitchell, and B. M. Turner. 1998. Distinctive patterns of histone H4 acetylation are associated with defined sequence elements within both heterochromatic and euchromatic regions of the human genome. Nucleic Acids Res. 26:994–1001.
  • Jones, P. L., G. J. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass, N. Landsberger, J. Strouboulis, and A. P. Wolffe. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19:187–191.
  • Kafri, T., M. Ariel, M. Brandeis, R. Shemer, L. Urven, J. McCarrey, H. Cedar, and A. Razin. 1992. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 6:705–714.
  • Kuo, M. H., J. Zhou, P. Jambeck, M. E. A. Churchill, and C. D. Allis. 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12:627–639.
  • Leff, S. E., C. I. Brannan, M. L. Reed, T. Ozcelik, U. Francke, N. G. Copeland, and N. A. Jenkins. 1992. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nat. Genet. 2:259–264.
  • Li, E., C. Beard, and R. Jaenisch. 1993. Role of DNA methylation in genomic imprinting. Nature 366:362–365.
  • Luger, K., and T. J. Richmond. 1998. Histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8:140–146.
  • Lyko, F., and R. Paro. 1999. Chromosomal elements conferring epigenetic inheritance. Bioessays 21:824–832.
  • Mayer, W., A. Niveleau, J. Walter, R. Fundele, and T. Haaf. 2000. Demethylation of the zygotic paternal genome. Nature 403:501–502.
  • Nan, X., H.-H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner, R. N. Eisenman, and A. Bird. 1998. Transcriptional repression by the methyl CpG binding protein MeCP2 involves a histone acetylase complex. Nature 393:386–389.
  • Ng, H.-H., P. Jeppesen, and A. Bird. 2000. Active repression of methylated genes by the chromosomal protein MBD1. Mol. Cell. Biol. 20:1394–1406.
  • Ng, H.-H., Y. Zhang, B. Hendrich, C. A. Johnson, B. M. Turner, H. Erdjument-Bromage, P. Tempst, D. Reinberg, and A. Bird. 1999. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet. 23:58–61.
  • O'Neill, L. P., A. M. Keohane, J. S. Lavender, V. McCabe, E. Heard, P. Avner, N. Brockdorff, and B. M. Turner. 1999. A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation. EMBO J. 18:2897–2907.
  • O'Neill, L. P., and B. M. Turner. 1995. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-independent manner. EMBO J. 14:3946–3957.
  • Parekh, B. S., and T. Maniatis. 1999. Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-β promoter. Mol. Cell 3:125–129.
  • Pfeifer, K.. 2000. Mechanisms of genomic imprinting. Am J. Hum. Genet. 67:777–787.
  • Rea, S., F. Eisenhaber, D. O'Carroll, B. D. Strahl, Z. W. Sun, M. Schmid, S. Opravil, K. Mechter, C. P. Ponting, C. D. Allis, and T. Jenuwein. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599.
  • Reik, W., and J. Walter. 1998. Imprinting mechanisms in mammals. Curr. Opin. Genet. Dev. 8:154–164.
  • Robertson, K. D., S. Ait-Si-Ali, T. Yokochi, P. A. Wade, P. L. Jones, and A. P. Wolffe. 2000. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25:338–342.
  • Rougier, N., D. Bourc'his, D. M. Gomes, A. Niveleau, M. Planchot, A. Paldi, and E. Viegas-Pequignot. 1998. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12:2108–2113.
  • Rundlett, S. E., A. A. Carmen, N. Suka, B. M. Turner, and M. Grunstein. 1998. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835.
  • Saitoh, S., and T. Wada. 2000. Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am. J. Hum. Genet. 66:1958–1962.
  • Schübeler, D., C. Francastel, D. M. Cimbora, A. Reik, D. I. Martin, and M. Groudine. 2000. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev. 14:940–950.
  • Shemer, R., A. Y. Hersko, J. Perk, R. Mostoslavsky, B. Z. Tsuberi, H. Cedar, K. Buiting, and A. Razin. 2000. The imprinting box of the Prader-Willi/Angelman syndrome domain. Nat. Genet. 26:440–443.
  • Shemer, R., Y. Birger, A. D. Riggs, and A. Razin. 1997. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc. Natl. Acad. Sci. USA 94:10267–10272.
  • Shibata, H., K. Yoshino, S. Sunahara, Y. Gondo, M. Katsuki, T. Ueda, M. Kamiya, M. Muramatsu, Y. Murakami, L. Kalcheva, C. Plass, V. N. Chapman, and Y. Hayashizaki. 1996. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11. Genomics 35:248–252.
  • Shibata, H., T. Ueda, M. Kamiya, A. Yoshida, M. Kusakabe, C. Plass, W. A. Held, S. Sunahara, M. Katsuki, M. Muramatsu, and Y. Hayashizaki. 1997. An oocyte-specific methylation imprint center in the mouse U2afbp-rs/U2af1-rs1 gene marks the establishment of allele-specific methylation during preimplantation development. Genomics 44:171–178.
  • Sleutels, F., D. P. Barlow, and R. Lyle. 2000. The uniqueness of the imprinting mechanism. Curr. Opin. Genet. Dev. 10:229–233.
  • Smith, E. R., A. Pannutti, W. Gu, A. Steurnagel, R. G. Cook, C. D. Allis, and J. C. Lucchesi. 2000. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell. Biol. 20:312–318.
  • Strahl, B. D., R. Ohba, R. G. Cook, and C. D. Allis. 1999. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA 96:14967–14972.
  • Strahl, B. D., and C. D. Allis. 2000. The language of covalent histone modifications. Nature 403:41–45.
  • Tanaka, M., M. Puchyr, M. Gerstenstein, K. Harpal, R. Jaenisch, J. Rossant, and A. Nagy. 1999. Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation. Mech. Dev. 87:129–142.
  • Turner, B. M.. 1998. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell. Mol. Life Sci. 54:21–31.
  • Turner, B. M.. 2000. Histone acetylation and an epigenetic code. Bioessays 22:836–845.
  • Turner, B. M., A. J. Birley, and J. Lavender. 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384.
  • Turner, B. M., and G. Fellows. 1989. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179:131–139.
  • White, D. A., N. D. Belyaev, and B. M. Turner. 1999. Preparation of site-specific antibodies to acetylated histones. Methods 19:417–424.
  • Wolffe, A. P.. 2000. Transcriptional control: imprinting insulation. Curr. Biol. 10:R463–R465.
  • Zhang, Y., H.-H. Ng, H. Erdjument-Bromage, P. Tempst, A. Bird, and D. Reinberg. 1999. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13:1924–1935.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.