10
Views
24
CrossRef citations to date
0
Altmetric
Gene Expression

Transcription-Independent RNA Polymerase II Dephosphorylation by the FCP1 Carboxy-Terminal Domain Phosphatase in Xenopus laevis Early Embryos

, , &
Pages 6359-6368 | Received 08 May 2001, Accepted 20 Jun 2001, Published online: 28 Mar 2023

REFERENCES

  • Archambault, J., G. Pan, G. K. Dahmus, M. Cartier, N. F. Marshall, S. Zhang, M. E. Dahmus, and J. Greenblatt. 1998. FCP1, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase IIO. J. Biol. Chem. 273:27593–27601.
  • Barillà, D., B. A. Lee, and N. J. Proudfoot. 2001. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 98:445–450.
  • Bellier, S., S. Chastant, P. Adenot, M. Vincent, J.-P. Renard, and O. Bensaude. 1997. Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos. EMBO J. 16:6250–6262.
  • Bellier, S., M.-F. Dubois, E. Nishida, G. Almouzni, and O. Bensaude. 1997. Phosphorylation of the RNA polymerase II largest subunit during Xenopus laevis oocyte maturation. Mol. Cell. Biol. 17:1434–1440.
  • Bensaude, O., F. Bonnet, C. Cassé, M.-F. Dubois, V.-T. Nguyen, and B. Palancade. 1999. Regulated phosphorylation of the RNA polymerase II C-terminal domain (CTD). Biochem. Cell Biol. 77:1–7.
  • Bonnet, F., M. Vigneron, O. Bensaude, and M.-F. Dubois. 1999. Transcription-independent phosphorylation of the RNA polymerase II carboxy-terminal domain (CTD) requiring ERK kinase activity. Nucleic Acids Res. 27:4399–4404.
  • Cassé, C., F. Giannoni, V. T. Nguyen, M.-F. Dubois, and O. Bensaude. 1999. The transcriptional inhibitors, actinomycin D and α-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. J. Biol. Chem. 274:16097–16106.
  • Chambers, R. S., and M. E. Dahmus. 1994. Purification and characterization of a phosphatase from HeLa cells that dephosphorylates the C-terminal domain of RNA polymerase II. J. Biol. Chem. 269:26243–26248.
  • Chambers, R. S., B. Q. Wang, Z. F. Burton, and M. E. Dahmus. 1995. The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. J. Biol. Chem. 270:14962–14969.
  • Cho, H., T. K. Kim, H. Mancebo, W. S. Lane, O. Flores, and D. Reinberg. 1999. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev. 13:1540–1552.
  • Corden, J. L., and M. Patturajan. 1997. A CTD function linking transcription to splicing. Trends Biochem. Sci. 22:413–416.
  • Dahmus, M. E.. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271:19009–19012.
  • Davidson, E. H.. 1986. Gene activity in early development, 3rd ed. Academic Press, Inc., Orlando, Fla
  • Dubois, M. F., N. F. Marshall, V. T. Nguyen, G. K. Dahmus, F. Bonnet, M. E. Dahmus, and O. Bensaude. 1999. Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain (CTD) of RNA polymerase II. Nucleic Acids Res. 27:1338–1344.
  • Dubois, M. F., V. T. Nguyen, S. Bellier, and O. Bensaude. 1994. Inhibitors of transcription such as 5,6-dichloro-1-β-d-ribofuranosyl benzimidazole (DRB) and isoquinoline sulfonamide derivatives (H-8 and H-7*) promote the dephosphorylation of the C-terminal domain (CTD) of RNA polymerase II largest subunit. J. Biol. Chem. 269:13331–13336.
  • Giudicelli, F., E. Taillebourg, P. Charnay, and P. Gilardi-Hebenstreit. 2001. Krox-20 patterns the hindbrain through both cell-autonomous and non cell-autonomous mechanisms. Genes Dev. 15:567–580.
  • Hirose, Y., and J. L. Manley. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93–96.
  • Kobor, M. S., J. Archambault, W. Lester, F. C. Holstege, O. Gileadi, D. B. Jansma, E. G. Jennings, F. Kouyoumdjian, A. R. Davidson, R. A. Young, and J. Greenblatt. 1999. An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol. Cell 4:55–62.
  • Kontermann, R. E., Z. Liu, R. A. Schulze, K. A. Sommer, I. Queitsch, S. Dubel, S. M. Kipriyanov, F. Breitling, and E. K. Bautz. 1995. Characterization of the epitope recognized by a monoclonal antibody directed against the largest subunit of Drosophila RNA polymerase II. Biol. Chem. Hoppe-Seyler. 376:473–481.
  • Leclerc, V., S. Raisin, and P. Leopold. 2000. Dominant-negative mutants reveal a role for the Cdk7 kinase at the mid-blastula transition in Drosophila embryos. EMBO J. 19:1567–1575.
  • Lee, T. I., and R. A. Young. 2000. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34:77–137.
  • Lehman, A. L., and M. E. Dahmus. 2000. The sensitivity of RNA polymerase II in elongation complexes to C-terminal domain phosphatase. J. Biol. Chem. 275:14923–14932.
  • Marshall, N. F., and M. E. Dahmus. 2000. C-terminal domain phosphatase sensitivity of RNA polymerase II in early elongation complexes on the HIV-1 and adenovirus 2 major late templates. J. Biol. Chem. 275:32430–32437.
  • Murray, A. W.. 1991. Cell cycle extracts. Methods Cell Biol. 36:581–605.
  • Palancade, B., S. Bellier, G. Almouzni, and O. Bensaude. Incomplete RNA polymerase II phosphorylation in Xenopus laevis early embryos. J. Cell Sci., in press.
  • Price, D. H.. 2000. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. 20:2629–2634.
  • Seydoux, G., and M. A. Dunn. 1997. Transcriptionally-repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of C. elegans and D. melanogaster. Development 124:2191–2201.
  • Svejstrup, J. Q., P. Vichi, and J.-M. Egly. 1996. The multiple roles of transcription/repair factor TFIIH. Trends Biochem. Sci. 21:346–350.
  • Swedlow, J. R.. 1999. Chromosome assembly in vitro using Xenopus egg extracts. Chromosome structural analysis: a practical approach.. W. A. Bickmore. 167–182. Oxford University Press, Oxford, United Kingdom
  • Valay, J.-G., M. Simon, M.-F. Dubois, O. Bensaude, C. Facca, and G. Faye. 1995. The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpb1p CTD. J. Mol. Biol. 249:535–544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.