7
Views
23
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Mechanism of Mammalian Gene Replacement Is Consistent with the Formation of Long Regions of Heteroduplex DNA Associated with Two Crossing-Over Events

, &
Pages 501-510 | Received 14 Jul 2000, Accepted 18 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Baker, M. D., N. Pennell, L. Bosnoyan, and M. J. Shulman. 1988. Homologous recombination can restore normal immunoglobulin production in a mutant hybridoma cell line. Proc. Natl. Acad. Sci. USA 85:6432–6436.
  • Bautista, D., and M. J. Shulman. 1993. A hit-and-run system for introducing mutations into the immunoglobulin heavy chain locus of hybridoma cells by homologous recombination. J. Immunol. 151:1950–1958.
  • Bertling, W. M.. 1995. Gene targeting. Gene targeting.. M. A. Vega. 1–44. CRC Press, Inc., Boca Raton, Fla
  • Bilofsky, H. S., C. Burks, J. W. Fickett, W. B. Goad, F. I. Lewitter, W. P. Rindone, C. D. Swindell, and C.-S. Tung. 1986. The Gen-Bank® genetic sequence databank. Nucleic Acids Res. 14:1–4.
  • Donoho, C., M. Jasin, and P. Berg. 1998. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell. Biol. 18:4070–4078.
  • Elliot, B., C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin. 1998. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18:93–101.
  • Goldberg, G. I., E. F. Vanin, A. M. Zrolka, and F. R. Blattner. 1981. Sequence of the gene for the constant region of the μ chain of Balb/c mouse. Gene 15:33–42.
  • Gross-Bellard, M., P. Qudet, and P. Chambon. 1973. Isolation of high-molecular weight DNA from mammalian cells. Eur. J. Biochem. 36:32–38.
  • Haber, J.. 1995. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17:609–620.
  • Hastings, P. J., C. McGill, B. Shafer, and J. N. Strathern. 1993. Ends-in vs. ends-out recombination in yeast. Genetics 135:973–980.
  • Hasty, P., J. Rivera-Perez, and A. Bradley. 1995. Gene conversion during vector insertion in embryonic stem cells. Mol. Cell. Biol. 12:2464–2474.
  • Inbar, O., and M. Kupiec. 1999. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell. Biol. 19:4134–4142.
  • Köhler, G., M. J. Potash, H. Lehrach, and M. J. Shulman. 1982. Deletions in immunoglobulin mu chains. EMBO J. 1:555–563.
  • Köhler, G., and M. J. Shulman. 1980. Immunoglobulin M mutants. Eur. J. Immunol. 10:467–476.
  • Leung, W.-Y., A. Malkova, and J. E. Haber. 1997. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94:6851–6856.
  • Li, J., and M. D. Baker. 2000. Use of a small palindrome genetic marker to investigate mechanisms of double-strand-break repair in mammalian cells. Genetics 154:1281–1289.
  • Li, J., and M. D. Baker. 2000. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting. J. Mol. Biol. 295:505–516.
  • Li, J., and M. D. Baker. 2000. Mechanisms involved in targeted gene replacement in mammalian cells. Genetics 156:809–821.
  • Mansour, S. L., K. R. Thomas, and M. R. Capecchi. 1988. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352.
  • Nag, D. K., M. A. White, and T. D. Petes. 1989. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature 340:318–320.
  • Negritto, M. T., X. Wu, T. Kuo, S. Chu, and A. M. Bailis. 1997. Influence of DNA sequence identity on efficiency of targeted gene replacement. Mol. Cell. Biol. 17:278–286.
  • Ng, P., and M. D. Baker. 1998. High efficiency, site-specific modification of the chromosomal immunoglobulin locus by gene targeting. J. Immunol. Methods 214:81–96.
  • Ng, P., and M. D. Baker. 1999. Mechanisms of double-strand-break repair during gene targeting in mammalian cells. Genetics 151:1127–1141.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Pâques, F., and J. E. Haber. 1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:6765–6771.
  • Rothstein, R.. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Sambrook, J., E. F. Fritsch, E. F., and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Southern, P. J., and P. Berg. 1981. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Appl. Mol. Genet. 1:327–341.
  • Sugawara, N., F. Pâques, M. Colaiacovo, and J. E. Haber. 1997. Role of Msh2 and Msh3 repair proteins in double-strand break induced recombination. Proc. Natl. Acad. Sci. USA 94:9214–9219.
  • Sun, H., D. Treco, and J. W. Szostak. 1991. Extensive 3′-overhanging, single-stranded DNA associated with meiosis-specific double strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161.
  • Surosky, R. T., and B. K. Tye. 1987. Site-directed chromosomal rearrangements in yeast. Methods Enzymol. 153:243–253.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Waldman, A. S.. 1992. Targeted homologous recombination in mammalian cells. Crit. Rev. Oncol. Hematol. 12:49–64.
  • Valancius, V., and O. Smithies. 1991. Double-strand gap repair in a mammalian gene targeting reaction. Mol. Cell. Biol. 11:4389–4397.
  • Vega, M. A.. 1995. Gene targeting in human gene therapy. Gene targeting.. M. A. Vega. 211–229. CRC Press, Inc., Boca Raton, Fla

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.