41
Views
154
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Calmodulin Binds to K-Ras, but Not to H- or N-Ras, and Modulates Its Downstream Signaling

, , , , , , , , & show all
Pages 7345-7354 | Received 20 Feb 2001, Accepted 27 Jul 2001, Published online: 27 Mar 2023

REFERENCES

  • Agell, N., R. Aligue, V. Alemany, A. Castro, M. Jaime, M. J. Pujol, E. Rius, J. Serratosa, M. Taules, and O. Bachs. 1998. New nuclear functions for calmodulin. Cell Calcium 23:115–121.
  • Alessi, D. R., and P. Cohen. 1998. Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev. 8:55–62.
  • Bachs, O., N. Agell, and E. Carafoli. 1994. Calmodulin and calmodulin-binding proteins in the nucleus. Cell Calcium 16:289–296.
  • Barbacid, M.. 1987. Ras genes. Annu. Rev. Biochem. 56:779–827.
  • Boguski, M. S., and F. McCormick. 1993. Proteins regulating Ras and its relatives. Nature 366:643–654.
  • Bos, J. L.. 1989. Ras oncogenes in human cancer: a review. Cancer Res. 49:4682–4689.
  • Bosch, M., J. Gil, O. Bachs, and N. Agell. 1998. Calmodulin inhibitor W13 induces sustained activation of ERK2 and expression of p21(cip1). J. Biol. Chem. 273:22145–22150.
  • Bosser, R., M. Faura, J. Serratosa, J. Renau-Piqueras, M. Pruschy, and O. Bachs. 1995. Phosphorylation of rat liver heterogeneous nuclear ribonucleoproteins A2 and C can be modulated by calmodulin. Mol. Cell. Biol. 15:661–670.
  • Brondello, J. M., A. Brunet, J. Pouyssegur, and F. R. McKenzie. 1997. The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J. Biol. Chem. 272:1368–1376.
  • Chafouleas, J. G., W. E. Bolton, H. Hidaka, A. E. Boyd, I. I. I., and A. R. Means. 1982. Calmodulin and the cell cycle: involvement in the regulation of the cell-cycle progression. Cell 28:41–50.
  • Coffer, P. J., J. Jin, and J. R. Woodgett. 1998. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 335:1–13.
  • Cook, S. J., J. Beltman, K. A. Cadwallader, M. McMahon, and F. McCormick. 1997. Regulation of mitogen-activated protein kinase phosphatase-1 expression by extracellular signal-related kinase-dependent and Ca2+-dependent signal pathways in Rat-1 cells. J. Biol. Chem. 272:13309–13319.
  • De-Rooij, J., and J. L. Bos. 1997. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14:623–625.
  • Downward, J.. 1992. Regulation of p21ras by GTPase activating proteins and guanine nucleotide exchange proteins. Curr. Opin. Genet. Dev. 2:13–18.
  • Downward, J.. 1998. Ras signalling and apoptosis. Curr. Opin. Genet. Dev. 8:49–54.
  • Egea, J., C. Espinet, and J. X. Comella. 1998. Calmodulin modulates mitogen-activated protein kinase activation in response to membrane depolarization in PC12 cells. J. Neurochem. 70:2554–2564.
  • Egea, J., C. Espinet, and J. X. Comella. 1999. Calcium influx activates extracellular-regulated kinase/mitogen-activated protein kinase pathway through a calmodulin-sensitive mechanism in PC12 cells. J. Biol. Chem. 274:75–85.
  • Egea, J., C. Espinet, R. M. Soler, S. Peiro, N. Rocamora, and J. X. Comella. 2000. Nerve growth factor activation of the extracellular signal-regulated kinase pathway is modulated by Ca2+ and calmodulin. Mol. Cell. Biol. 20:1931–1946.
  • Enslen, H., H. Tokumitsu, P. J. Stork, R. J. Davis, and T. R. Soderling. 1996. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc. Natl. Acad. Sci. USA 93:10803–10808.
  • Fam, N. P., W. T. Fan, Z. Wang, L. J. Zhang, H. Chen, and M. F. Moran. 1997. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol. Cell. Biol. 17:1396–1406.
  • Farnsworth, C. L., N. W. Freshney, L. B. Rosen, A. Ghosh, M. E. Greenberg, and L. A. Feig. 1995. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376:524–527.
  • Goodman, S. R., K. E. Krebs, C. F. Whitfield, B. M. Riederer, and I. S. Zagon. 1988. Spectrin and related molecules. Crit. Rev. Biochem. 23:171–234.
  • Hackel, P. O., E. Zwick, N. Prenzel, and A. Ullrich. 1999. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol. 11:184–189.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Laboratory Press, Cold Spring Harbor, N.Y
  • Herget, T., S. Broad, and E. Rozengurt. 1994. Overexpression of the myristoylated alanine-rich C-kinase substrate in Rat1 cells increases sensitivity to calmodulin antagonists. Eur. J. Biochem. 225:549–556.
  • Ji, Q. S., and G. Carpenter. 2000. Role of basal calcium in the EGF activation of MAP kinases. Oncogene 19:1853–1856.
  • Johnson, L., D. Greenbaum, K. Cichowski, K. Mercer, E. Murphy, E. Schmitt, R. T. Bronson, H. Umanoff, W. Edelmann, R. Kucherlapati, and T. Jacks. 1997. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11:2468–2481.
  • Kahan, C., K. Seuwen, S. Meloche, and J. Pouyssegur. 1992. Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts. Evidence for thrombin-induced signals different from phosphoinositide turnover and adenylylcyclase inhibition. J. Biol. Chem. 267:13369–13375.
  • Katz, M. E., and F. McCormick. 1997. Signal transduction from multiple Ras effectors. Curr. Opin. Genet. Dev. 7:75–79.
  • Khosravi-Far, R., S. Campbell, K. L. Rossman, and C. J. Der. 1998. Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv. Cancer Res. 72:57–107.
  • Klee, C. B., H. Ren, and X. Wang. 1998. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273:13367–13370.
  • Klee, C., and T. Vanaman. 1982. Calmodulin. Adv. Protein Chem. 35:213–321.
  • Kuboki, Y., M. Ito, N. Takamatsu, K. Yamamoto, T. Shiba, and K. Yoshioka. 2000. A scaffold protein in the c-Jun NH2-terminal kinase signaling pathways suppresses the extracellular signal-regulated kinase signaling pathways. J. Biol. Chem. 275:39815–39818.
  • Laemmli, U. K.. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Lenormand, P., J. M. Brondello, A. Brunet, and J. Pouyssegur. 1998. Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J. Cell Biol. 142:625–633.
  • Lewis, T. S., P. S. Shapiro, and N. G. Ahn. 1998. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74:49–139.
  • López-Girona, A., J. Colomer, M. J. Pujol, O. Bachs, and N. Agell. 1992. Calmodulin regulates DNA polymerase alpha activity during proliferative activation of NRK cells. Biochem. Biophys. Res. Commun. 184:1517–1523.
  • Lu, K. P., and A. R. Means. 1993. Regulation of the cell cycle by calcium and calmodulin. Endocrine Rev. 14:40–57.
  • Marshall, C. J.. 1999. How do small GTPase signal transduction pathways regulate cell cycle entry?. Curr. Opin. Cell Biol. 11:732–736.
  • Marshall, C. J.. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • Marshall, C. J.. 1996. Ras effectors. Curr. Opin. Cell Biol. 8:197–204.
  • Martin-Nieto, J., and A. Villalobo. 1998. The human epidermal growth factor receptor contains a juxtamembrane calmodulin-binding site. Biochemistry 37:227–236.
  • Muthalif, M. M., I. F. Benter, M. R. Uddin, and K. U. Malik. 1996. Calcium/calmodulin-dependent protein kinase II alpha mediates activation of mitogen-activated protein kinase and cytosolic phospholipase A2 in norepinephrine-induced arachidonic acid release in rabbit aortic smooth muscle cells. J. Biol. Chem. 271:30149–30157.
  • Pumiglia, K. M., and S. J. Decker. 1997. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 94:448–452.
  • Rebollo, A., and A. Martinez. 1999. Ras proteins: recent advances and new functions. Blood 94:2971–2980.
  • Renshaw, M. W., X. D. Ren, and M. A. Schwartz. 1997. Growth factor activation of MAP kinase requires cell adhesion. EMBO J. 16:5592–5599.
  • Ries, S., C. Biederer, D. Woods, O. Shifman, S. Shirasawa, T. Sasazuki, M. McMahon, M. Oren, and F. McCormick. 2000. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103:321–330.
  • Robinson, M. J., and M. H. Cobb. 1997. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9:180–186.
  • Rodriguez-Viciana, P., P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. J. Fry, M. D. Waterfield, and J. Downward. 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532.
  • Roy, S., R. Luetterforst, A. Harding, A. Apolloni, M. Etheridge, E. Stang, B. Rolls, J. F. Hancock, and R. G. Parton. 1999. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell Biol. 1:98–105.
  • San Jose, E., A. Benguria, P. Geller, and A. Villalobo. 1992. Calmodulin inhibits the epidermal growth factor receptor tyrosine kinase. J. Biol. Chem. 267:15237–15245.
  • Schulman, H.. 1993. The multifunctional Ca2+/calmodulin-dependent protein kinases. Curr. Opin. Cell Biol. 5:247–253.
  • Sewing, A., B. Wiseman, A. C. Lloyd, and H. Land. 1997. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17:5588–5597.
  • Stancato, L. F., A. M. Silverstein, J. K. Owens-Grillo, Y. H. Chow, R. Jove, and W. B. Pratt. 1997. The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J. Biol. Chem. 272:4013–4020.
  • Sun, H., C. H. Charles, L. F. Lau, and N. K. Tonks. 1993. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75:487–493.
  • Taules, M., E. Rius, D. Talaya, G. A. Lopez, O. Bachs, and N. Agell. 1998. Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G(1). J. Biol. Chem. 273:33279–33286.
  • Taules, M., V. A. Rodriguez, E. Rius, J. M. Estanyol, O. Casanovas, D. B. Sacks, P. E. Perez, O. Bachs, and N. Agell. 1999. Calmodulin binds to p21(Cip1) and is involved in the regulation of its nuclear localization. J. Biol. Chem. 274:24445–24448.
  • Umanoff, H., W. Edelmann, A. Pellicer, and R. Kucherlapati. 1995. The murine N-ras gene is not essential for growth and development. Proc. Natl. Acad. Sci. USA 92:1709–1713.
  • Wolthuis, R. M., and J. L. Bos. 1999. Ras caught in another affair: the exchange factors for Ral. Curr. Opin. Genet. Dev. 9:112–117.
  • Woods, D., D. Parry, H. Cherwinski, E. Bosch, E. Lees, and M. McMahon. 1997. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17:5598–5611.
  • Yan, J., S. Roy, A. Apolloni, A. Lane, and J. F. Hancock. 1998. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273:24052–24056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.