222
Views
239
CrossRef citations to date
0
Altmetric
Gene Expression

Translation Initiation Control by Heme-Regulated Eukaryotic Initiation Factor 2α Kinase in Erythroid Cells under Cytoplasmic Stresses

, &
Pages 7971-7980 | Received 04 May 2001, Accepted 27 Aug 2001, Published online: 27 Mar 2023

REFERENCES

  • Adler, V., Z. Yin, K. D. Tew, and Z. Ronai. 1999. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18:6104–6111.
  • Bauer, B. N., M. Rafie-Kolpin, L. Lu, A. Han, and J.-J. Chen. Multiple autophosphorylation is essential for the formation of the active and stable homodimer of heme-regulated eIF-2α kinase. Biochemistry, in press.
  • Berlanga, J. J., J. Santoyo, and C. DeHaro. 1999. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur. J. Biochem. 265:754–762.
  • Brostrom, C. O., and M. A. Brostrom. 1998. Regulation of translational initiation during cellular responses to stress. Prog. Nucleic Acid Res. Mol. Biol. 58:79–125.
  • Caplan, A. J.. 1999. Hsp90's secrets unfold: new insights from structural and functional studies. Trends Cell. Biol. 9:262–268.
  • Chefalo, P., J. Oh, M. Rafie-Kolpin, and J.-J. Chen. 1998. Heme-regulated eIF-2α kinase purifies as a hemoprotein. Eur. J. Biochem. 258:820–830.
  • Chefalo, P. J., J. M. Yang, K. V. A. Ramaiah, L. Gehrke, and J.-J. Chen. 1994. Inhibition of protein synthesis in insect cells by baculovirus-expressed heme-regulated eIF-2α kinase. J. Biol. Chem. 269:25788–25794.
  • Chen, J.-J.. 2000. Heme-regulated eIF-2α kinase. Translational control of gene expression. N. Sonenberg, J. W. B. Hershey, and M. B. Mathews. 529–546. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Chen, J.-J., and I. M. London. 1995. Regulation of protein synthesis by heme-regulated eIF-2α kinase. Trends Biochem. Sci. 20:105–108.
  • Chen, Y. C., S. Y. Lin-Shiau, and J. K. Lin. 1998. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J. Cell. Physiol. 177:324–333.
  • Clemens, M. J., B. Safer, W. C. Merrick, W. F. Anderson, and I. M. London. 1975. Inhibition of protein synthesis in rabbit reticulocyte lysates by double-stranded RNA and oxidized glutathione: indirect mode of action on polypeptide chain initiation. Proc. Natl. Acad. Sci. USA 72:1286–1290.
  • Crosby, J. S., P. J. Chefalo, I. Yeh, S. Ying, I. M. London, P. Leboulch, and J.-J. Chen. 2000. Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2α kinase. Blood 96:3241–3247.
  • Crosby, J. S., K. Lee, I. M. London, and J.-J. Chen. 1994. Erythroid expression of the heme-regulated eIF-2α kinase. Mol. Cell. Biol. 14:3906–3914.
  • Han, A., C. Yu, L. Lu, Y. Fujiwara, C. Browne, G. Chin, M. Fleming, P. Leboulch, S. H. Orkin, and J.-J. Chen. HRI is required for translational regulation and survival of erythroid precursors in iron-deficiency. EMBO J., in press.
  • Harding, H. P., H. Zeng, Y. Zhang, R. Jungries, P. Chung, H. Plesken, D. D. Sabatini, and D. Ron. 2001. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7:1153–1163.
  • Harding, H. P., Y. Zhang, A. Bertolotti, H. Zeng, and D. Ron. 2000. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5:897–904.
  • Harding, H. P., Y. Zhang, and D. Ron. 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274.
  • Hershey, J. W., and W. C. Merrick. 2000. Pathway and mechanism of initiation of protein synthesis. Translational control of gene expression.. N. Sonenberg, J. W. Hershey, and M. Matthews. 33–88. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Hershey, J. W. B.. 1991. Translational control in mammalian cells. Annu. Rev. Biochem. 60:717–755.
  • Hinnebusch, A. G.. 1996. Translational control of GCN4: gene-specific regulation by phosphorylation of eIF2. Translational control.. J. W. B. Hershey, M. B. Mathews, and N. Sonenberg. 199–244. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Ito, T., M. Yang, and W. S. May. 1999. RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J. Biol. Chem. 274:15427–15432.
  • Kan, B., I. M. London, and D. H. Levin. 1988. Role of reversing factor in the inhibition of protein synthesis initiation by oxidized glutathione. J. Biol. Chem. 263:15652–15656.
  • Kaufman, R. J.. 1999. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13:1211–1233.
  • Kimball, S. R., M. J. Clemens, V. J. Tilleray, R. C. Wek, R. L. Horetsky, and L. S. Jefferson. 2001. The double-stranded RNA-activated protein kinase PKR is dispensable for regulation of translation initiation in response to either calcium mobilization from the endoplasmic reticulum or essential amino acid starvation. Biochem. Biophys. Res. Commun. 280:293–300.
  • Krishnamoorthy, T., G. D. Pavitt, F. Zhang, T. E. Dever, and A. G. Hinnebusch. 2001. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol. Cell. Biol 21:5018–5030.
  • Martin de la Vega, C., A. Garcia, M. E. Martin, A. Alcazar, O. Marin, C. Quevedo, and M. Salinas. 1999. Resistance of initiation factor 2. (eIF-2alpha) kinases to staurosporine: an approach for assaying the kinases in crude extracts. Cell Signal 11:399–404.
  • Morley, S. J., and L. McKendrick. 1997. Involvement of stress-activated protein kinase and p38/ERK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J. Biol. Chem. 272:17887–17893.
  • Morse, B. S., M. Conlan, D. G. Giuliani, and M. Nussbaum. 1980. Mechanism of arsenic-induced inhibition of erythropoiesis in mice. Am. J. Hematol. 8:273–280.
  • Neckers, L., T. W. Schulte, and E. Mimnaugh. 1999. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest. New Drugs 17:361–373.
  • Patel, C. V., I. Handy, T. Goldsmith, and R. C. Patel. 2000. PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J. Biol. Chem. 275:37993–37998.
  • Patel, R. C., and G. C. Sen. 1998. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 17:4379–4390.
  • Porter, A. C., G. R. Fanger, and R. R. Vaillancourt. 1999. Signal transduction pathways regulated by arsenate and arsenite. Oncogene 18:794–802.
  • Proud, C. G.. 1995. PKR: a new name and new roles. Trends Biochem. Sci. 20:241–246.
  • Rafie-Kolpin, M., P. J. Chefalo, Z. Hussain, J. Hahn, S. Ma, R. L. Matts, and J.-J. Chen. 2000. Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion. J. Biol. Chem. 275:5171–5178.
  • Ronai, Z.. 1999. Deciphering the mammalian stress response—a stressful task. Oncogene 18:6084–6086.
  • Saklatvala, J., L. Rawlinson, R. J. Waller, S. Sarsfield, J. C. Lee, L. F. Morton, M. J. Barnes, and R. W. Farndale. 1996. Role for p38 mitogen-activated protein kinase in platelet aggregation caused by collagen or a thromboxane analogue. J. Biol. Chem. 271:6586–6589.
  • Sen, C.. 1998. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem. Pharmacol. 55:1747–1758.
  • Shi, Y., K. M. Vattem, R. Sood, J. An, J. Liang, L. Stramm, and R. C. Wek. 1998. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18:7499–7509.
  • Smith, A. H., E. O. Lingas, and M. Rahman. 2000. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. W. H. O. 78:1093–1103.
  • Sood, R., A. C. Porter, D. Olsen, D. R. Cavener, and R. C. Wek. 2000. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α. Genetics 154:787–801.
  • Uma, S., S. D. Hartson, J.-J. Chen, and R. L. Matts. 1997. Hsp90 is obligatory for the heme-regulated eIF-2α kinase to acquire and maintain an activatable conformation. J. Biol. Chem. 272:11648–11656.
  • Uma, S., V. Thulasiraman, and R. L. Matts. 1999. Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the α subunit of eukaryotic translation initiation factor 2. Mol. Cell. Biol. 19:5861–5871.
  • Yang, R., S. A. Wek, and R. C. Wek. 2000. Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol. Cell. Biol. 20:2706–2717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.