64
Views
116
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Construction and Analysis of Mouse Strains Lacking the Ubiquitin Ligase UBR1 (E3α) of the N-End Rule Pathway

, , , &
Pages 8007-8021 | Received 06 Jun 2001, Accepted 06 Sep 2001, Published online: 27 Mar 2023

REFERENCES

  • Alagramam, K., F. Naider, and J. M. Becker. 1995. A. Recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae. Mol. Microbiol. 15:225–234.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman, and K. Struhl. 2000. Current protocols in molecular biology. Wiley-Interscience, New York, N.Y
  • Bachmair, A., D. Finley, and A. Varshavsky. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.
  • Bachmair, A., and A. Varshavsky. 1989. The degradation signal in a short-lived protein. Cell 56:1019–1032.
  • Baker, R. T., and A. Varshavsky. 1991. Inhibition of the N-end rule pathway in living cells. Proc. Natl. Acad. Sci. USA 87:2374–2378.
  • Baker, R. T., and A. Varshavsky. 1995. Yeast N-terminal amidase. A new enzyme and component of the N-end rule pathway. J. Biol. Chem. 270:12065–12074.
  • Balzi, E., M. Choder, W. Chen, A. Varshavsky, and A. Goffeau. 1990. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J. Biol. Chem. 265:7464–7471.
  • Bartel, B., I. Wünning, and A. Varshavsky. 1990. The recognition component of the N-end rule pathway. EMBO J. 9:3179–3189.
  • Byrd, C., G. C. Turner, and A. Varshavsky. 1998. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17:269–277.
  • Chau, V., J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda, and A. Varshavsky. 1989. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583.
  • Davydov, I. V., D. Patra, and A. Varshavsky. 1998. The N-end rule pathway in Xenopus egg extracts. Arch. Biochem. Biophys. 357:317–325.
  • Davydov, I. V., and A. Varshavsky. 2000. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J. Biol. Chem. 275:22931–22941.
  • deGroot, R. J., T. Rümenapf, R. J. Kuhn, and J. H. Strauss. 1991. Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc. Natl. Acad. Sci. USA 88:8967–8971.
  • DeMartino, G. N., and C. A. Slaughter. 1999. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 274:22123–22126.
  • Deshaies, R. J.. 1999. SCF and cullin/RING-H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15:435–467.
  • Dohmen, R. J.. 2000. Primary destruction signals. Proteasomes: the world of regulatory proteolysis.. W. Hilt, and D. Wolf. 188–205. R. G. Landes Biosciences, Georgetown, Tex
  • Dohmen, R. J., K. Madura, B. Bartel, and A. Varshavsky. 1991. The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc. Natl. Acad. Sci. USA 88:7351–7355.
  • Gonda, D. K., A. Bachmair, I. Wünning, J. W. Tobias, W. S. Lane, and A. Varshavsky. 1989. Universality and structure of the N-end rule. J. Biol. Chem. 264:16700–16712.
  • Grigoryev, S., A. E. Stewart, Y. T. Kwon, S. M. Arfin, R. A. Bradshaw, N. A. Jenkins, N. G. Copeland, and A. Varshavsky. 1996. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J. Biol. Chem. 271:28521–28532.
  • Haas, A. J., and T. J. Siepman. 1997. Pathways of ubiquitin conjugation. FASEB J. 11:1257–1268.
  • Harlow, E., and D. Lane. 1999. Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Heller, H., and A. Hershko. 1990. A ubiquitin-protein ligase specific for type III protein substrates. J. Biol. Chem. 265:6532–6535.
  • Hershko, A., and A. Ciechanover. 1998. The ubiquitin system. Annu. Rev. Biochem. 76:425–479.
  • Hershko, A., A. Ciechanover, and A. Varshavsky. 2000. The ubiquitin system. Nat. Med. 10:1073–1081.
  • Hicke, L.. 2001. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell. Biol. 2:195–201.
  • Hochstrasser, M.. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439.
  • Hondermarck, H., J. Sy, R. A. Bradshaw, and S. M. Arfin. 1992. Dipeptide inhibitors of ubiquitin-mediated protein turnover prevent growth factor-induced neurite outgrowth in rat pheochromocytoma PC12 cells. Biochem. Biophys. Res. Commun. 30:280–288.
  • Joazeiro, C. A. P., and T. Hunter. 2000. Ubiquitination: more than two to tango. Science 289:2061–2062.
  • Johnson, E. S., D. K. Gonda, and A. Varshavsky. 1990. Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346:287–291.
  • Johnson, E. S., P. C. Ma, I. M. Ota, and A. Varshavsky. 1995. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270:17442–17456.
  • Koken, M. H., P. Reynolds, I. Jaspers-Dekker, L. Prakash, S. Prakash, D. Bootsma, and J. H. Hoeijmakers. 1991. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc. Natl. Acad. Sci. USA 88:8865–8869.
  • Kwon, Y. T., S. A. Balogh, I. V. Davydov, A. S. Kashina, J. K. Yoon, Y. Xie, A. Gaur, L. Hyde, V. H. Denenberg, and A. Varshavsky. 2000. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol. Cell. Biol. 20:4135–4148.
  • Kwon, Y. T., A. S. Kashina, and A. Varshavsky. 1999. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol. Cell. Biol. 19:182–193.
  • Kwon, Y. T., F. Levy, and A. Varshavsky. 1999. Bivalent inhibitor of the N-end rule pathway. J. Biol. Chem. 274:18135–18139.
  • Kwon, Y. T., Y. Reiss, V. A. Fried, A. Hershko, J. K. Yoon, D. K. Gonda, P. Sangan, N. G. Copeland, N. A. Jenkins, and A. Varshavsky. 1998. The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 95:7898–7903.
  • Laney, J. D., and M. Hochstrasser. 1999. Substrate targeting in the ubiquitin system. Cell 97:427–430.
  • Lawson, T. G., D. L. Gronros, P. E. Evans, M. C. Bastien, K. M. Michalewich, J. K. Clark, J. H. Edmonds, K. H. Graber, J. A. Werner, B. A. Lurvey, and J. M. Cate. 1999. Identification and characterization of a protein destruction signal in the encephalomyocarditis virus 3C protease. J. Biol. Chem. 274:9871–9880.
  • Lecker, S. H., V. Solomon, S. R. Price, Y. T. Kwon, W. E. Mitch, and A. L. Goldberg. 1999. Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J. Clin. Investig. 104:1411–1420.
  • Lévy, F., N. Johnsson, T. Rumenapf, and A. Varshavsky. 1996. Using ubiquitin to follow the metabolic fate of a protein. Proc. Natl. Acad. Sci. USA 93:4907–4912.
  • Li, J., and C. M. Pickart. 1995. Binding of phenylarsenoxide to Arg-tRNA-protein transferase is independent of vicinal thiols. Biochemistry 34:15829–15837.
  • Loftus, T. M., D. E. Jaworsky, G. L. Frehywot, C. A. Townsend, G. V. Ronnett, M. D. Lane, and F. P. Kuhajda. 2000. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288:2379–2381.
  • Madura, K., R. J. Dohmen, and A. Varshavsky. 2054. 1993. N-recognin/Ubc2 interactions in the N-end rule pathway. J. Biol. Chem. 268:12046–12051.
  • Madura, K., and A. Varshavsky. 1994. Degradation of Gα by the N-end rule pathway. Science 265:1454–1458.
  • Masdehors, P., S. Glaisner, Z. Maciorowski, H. Magdelenat, and J. Delic. 2000. Ubiquitin-dependent protein processing controls radiation-induced apoptosis through the N-end rule pathway. Exp. Cell Res. 257:48–57.
  • Mulder, L. C. F., and M. A. Muesing. 2000. Degradation of HIV-1 integrase by the N-end rule pathway. J. Biol. Chem. 275:29749–29753.
  • Mumberg, D., R. Muller, and M. Funk. 1994. Regulatable promoters of Saccharomyces cerevisiae—comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22:5767–5768.
  • Obin, M., E. Mesco, X. Gong, A. L. Haas, J. Joseph, and A. Taylor. 1999. Neurite outgrowth in PC12 cells. Distinguishing the roles of ubiquitylation and ubiquitin-dependent proteolysis. J. Biol. Chem. 274:11789–11795.
  • Pickart, C. M.. 1997. Targeting of substrates to the 26S proteasome. FASEB J. 11:1055–1066.
  • Plemper, R. K., and D. H. Wolf. 1999. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24:266–270.
  • Potuschak, T., S. Stary, P. Schlogelhofer, F. Becker, V. Nejinskaia, and A. Bachmair. 1998. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc. Natl. Acad. Sci. USA 95:7904–7908.
  • Rao, H., F. Uhlmann, K. Nasmyth, and A. Varshavsky. 2001. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410:955–960.
  • Rechsteiner, M.. 1998. The 26S proteasome. Ubiquitin and the biology of the cell.. J. M. Peters, J. R. Harris, and D. Finley. 147–189. Plenum Press, New York, N.Y
  • Reiss, Y., D. Kaim, and A. Hershko. 1988. Specificity of binding of N-terminal residues of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. J. Biol. Chem. 263:2693–2698.
  • Robertson, E. J.. 1987. Embryo-derived stem cell lines. Teratocarcinomas and embryonic stem cells: a practical approach.. E. J. Robertson. 71–112. IRL Press, Oxford, United Kingdom
  • Roest, H. P., J. van Klaveren, J. de Wit, C. G. van Gurp, M. H. Koken, M. Vermey, J. H. van Roijen, J. W. Hoogerbrugge, J. T. Vreeburg, W. M. Baarends, D. Bootsma, J. A. Grootegoed, and J. H. Hoeijmakers. 1996. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86:799–810.
  • Schauber, C., L. Chen, P. Tongaonkar, I. Vega, and K. Madura. 1998. Sequence elements that contribute to the degradation of yeast G-alpha. Genes Cells 3:307–319.
  • Scheffner, M., S. Smith, and S. Jentsch. 1998. The ubiquitin conjugation system. Ubiquitin and the biology of the cell.. J.-M. Peters, J. R. Harris, and D. Finley. 65–98. Plenum Press, New York, N.Y
  • Sherman, F.. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Sijts, A. J., I. Pilip, and E. G. Pamer. 1997. The Listeria monocytogenes-secreted p60 protein is an N-end rule substrate in the cytosol of infected cells. Implications for major histocompatibility complex class I antigen processing of bacterial proteins. J. Biol. Chem. 272:19261–19268.
  • Solomon, V., V. Baracos, P. Sarraf, and A. Goldberg. 1998. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 95:12602–12607.
  • Solomon, V., and A. L. Goldberg. 1996. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J. Biol. Chem. 271:26690–26697.
  • Solomon, V., S. H. Lecker, and A. L. Goldberg. 1998. The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle. J. Biol. Chem. 273:25216–25222.
  • Stewart, A.. 1995. Trends in genetics nomenclature guide. Elsevier Science, Ltd., Cambridge, United Kingdom
  • Stewart, A. E., S. M. Arfin, and R. A. Bradshaw. 1995. The sequence of porcine protein NH2-terminal asparagine amidohydrolase. A new component of the N-end rule pathway. J. Biol. Chem. 270:25–28.
  • Sung, P., S. Prakash, and L. Prakash. 1991. Stable ester conjugate between the S. cerevisiae RAD6 protein and ubiquitin has no biological activity. J. Mol. Biol. 221:745–749.
  • Suzuki, T., and A. Varshavsky. 1999. Degradation signals in the lysine-asparagine sequence space. EMBO J. 18:6017–6026.
  • Taban, C. H., H. Hondermarck, R. A. Bradshaw, and B. Boilly. 1996. Effect of a dipeptide inhibiting ubiquitin-mediated protein degradation on nerve-dependent limb regeneration in the newt. Experientia 52:865–870.
  • Turner, G. C., F. Du, and A. Varshavsky. 2000. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405:579–583.
  • Turner, G. C., and A. Varshavsky. 2000. Detecting and measuring cotranslational protein degradation in vivo. Science 289:2117–2120.
  • Tyers, M., and P. Jorgensen. 2000. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10:54–64.
  • Varshavsky, A.. 1996. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93:12142–12149.
  • Varshavsky, A.. 1991. Naming a targeting signal. Cell 64:13–15.
  • Varshavsky, A.. 2000. Ubiquitin fusion technique and its descendants. Methods Enzymol. 327:578–593.
  • Varshavsky, A.. 1997. The ubiquitin system. Trends Biochem. Sci. 22:383–387.
  • Voges, D., P. Zwickl, and W. Baumeister. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68:1015–1068.
  • Waizenegger, I. C., S. Hauf, A. Meinke, and J.-M. Peters. 2000. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410.
  • Wakil, S. J.. 1989. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530.
  • Weissman, A. M.. 2001. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2:169–178.
  • Xie, Y., and A. Varshavsky. 1999. The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18:6832–6844.
  • Xie, Y., and A. Varshavsky. 2000. Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl. Acad. Sci. USA 97:2497–2502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.